一、引入 极大似然估计,我们也把它叫做最大似然估计(Maximum Likelihood Estimation),英文简称MLE。它是机器学习中常用的一种参数估计方法。它提供了一种给定观测数据来评估模型参数的方法。也就是模型已知,参数未定。
在我们正式讲解极大似然估计之前,我们先简单回顾以下两个概念:概率密度函数(Probability Density function),英文简称pdf似然
转载
2023-06-29 11:09:04
251阅读
似然“似然”是对likelihood 的一种较为贴近文言文的翻译.“似然”用现代的中文来说即“可能性”。 似然函数设总体X服从分布P(x;θ)(当X是连
原创
2023-11-07 14:03:54
220阅读
目录最大似然估计算法最大似然估计例子最大似然估计算法存在的问题 最大似然估计算法EM算法是一种最大似然估计(Max imum Likel ihood Est imation)算法,传统的最大似然估计算法是根据已知的观察数据来评估模型参数最大似然估计的一般步骤如下:首先确保采集得到的样本数据是独立同分布的,这是最大似然估计的前提,这样才可以对于数据建立统一的概率分布模型。在这个前提下对于概
转载
2023-10-10 06:11:59
98阅读
最大似然估计(Maximum Likelihood Estimation),是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的。一、最大似然估计法的基本思想 最大似然估计法的思想很简单:在已经得到试验结果的情况下,我们应该寻找使这个结果出现的可能性最大的那个 作为真
文章目录参考资料1. 最大似然估计1.1 原理1.2 示例2. EM算法2.1 原理2.2 示例 参考资料统计计算中的优化问题1. 最大似然估计1.1 原理统计中许多问题的计算最终都归结为一个最优化问题, 典型代表是最大似然估计(MLE)、各种拟似然估计方法、 非线性回归、惩罚函数方法(如svm、lasso)等。最大似然估计经常需要用最优化算法计算, 最大似然估计问题有自身的特点, 可以直接用一
转载
2024-08-09 12:59:39
48阅读
例子1:抽球举个通俗的例子:假设一个袋子装有白球与红球,比例未知,现在抽取10次(每次抽完都放回,保证事件独立性),假设抽到了7次白球和3次红球,在此数据样本条件下,可以采用最大似然估计法求解袋子中白球的比例(最大似然估计是一种“模型已定,参数未知”的方法)。当然,这种数据情况下很明显,白球的比例是70%,但如何通过理论的方法得到这个答案呢?一些复杂的条件下,是很难通过直观的方式获
转载
2023-11-09 00:22:09
73阅读
定义极大似然估计方法(Maximum Likelihood Estimate,MLE)也称最大概似估计或最大似然估计: 利用已知的样本结果,反推最有可能(最大概率)导致这样的结果的参数值。 思想:已经拿到很多个样本,这些样本值已实现,最大似然估计就是找参数估计值,使得前面已经实现的样本值发生概率最大。 本质:其是一种概率论在统计学的应用,是参数估计的方法之一;其是一种粗略的数学期望,要知道它
转载
2023-09-04 14:33:56
148阅读
。一、简介最大似然估计法 是费希尔(Fisher, R. ...
原创
2021-06-30 15:00:41
1459阅读
欢迎点击「算法与编程之美」↑关注我们!本文首发于:"算法与编程之美",欢迎关注,及时了解更多此系列文章。
原创
2022-03-02 11:46:13
421阅读
一文读懂最大似然估计(附R代码) R语言中的最大似然估计 最大似然估计(Maximum likelihood estimation)(通过例子理解) https://blog.csdn.net/qq_39355550/article/details/81809467
原创
2022-06-01 11:04:21
314阅读
最大似然估计(Maximum Likelihood Estimation,MLE)是一种常用的参数估计方法,用于寻找最有可能生成观测数据的模型参数值。在图像重建中,最大似然估计可以用来估计生成模型的参数,从而进行图像的重建。最大似然估计的基本思想是找到使观测数据出现的概率最大的模型参数,即找到使似然函数最大化的参数值。假设观测数据独立同分布,似然函数可以表示为所有样本的概率密度函数乘积。具体步骤如
参数估计(Parameter Estimation)。常用的估计方法有 最大似然估计、最大后验估计、贝叶斯估计等。x=(x1,…,xn)是来自概率密度函数p(x|θ)的独立采样,则其乘积 p(x|θ)=∏i=1np(xi|θ) θ给定时,p(x|θ)是样本x的联合密度函数;当样本x的观察值给定时,p(x|θ)是未知参数θ的函数,称为样本的似然函数,常记作L(θ)。对数似然函数 ℓ(θ)=lnL(
转载
2023-10-23 11:31:27
259阅读
目录极大似然估计最大似然原理极大似然估计似然函数极大似然函数估计值求解极大似然函数未知参数只有一个位置参数有多个总结极大似然估计最大似然原理极大似然估计 极大似然估计是建立在最大似然原理的基础上的一个统计方法。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大似然估计。 简而
最大似然估计 最大似然估计(Maximum likelihood estimation)可以简单理解为我们有一堆数据(数据之间是独立同分布的.iid),为了得到这些数据,我们设计了一个模型,最大似然估计就是求使模型能够得到这些数据的最大可能性的参数,这是一个统计(statistics)问题 与概率( ...
转载
2021-09-20 20:45:00
368阅读
2评论
在图像重建中,最大似然估计可以用来估计生成模型的参数,从而进行图像的重建。当数据集较小时,估计的参数可能会出现过
1.常见的聚类算法1):划分法:k-means2):基于密度的方法:2.EM 算法EM算法是在概率模型中寻找参数的最大似然估计或者最大后验概率的算法,其中概率模型依赖于无法观测的隐藏变量。EM算法经常用在机器学习和计算机视觉的数据聚类领域。算法步骤:E步:计算期望,利用对隐藏变量的现有估计值,计算其最大似然估计M步:最大化在E步上求得的最大似然值来计算参数的值 3.最大似然函
转载
2024-07-24 14:11:43
29阅读
最普遍的情况是概率密度函数并不是已知的,在很多的问题中,潜在的概率密度函数必须从可用的数据中估计。例如有时可能知道概率密度函数的类型(高斯、瑞利等),但不知道具体的参数如方差或均值;相反,有时知道一些参数,但不知道概率密度的类型。有各种各样的方法解决这个问题,根据不同的已知信息采取不同的解决办法。这里介绍最大似然参数估计。 &nb
转载
2024-01-13 07:05:52
200阅读
https://www.zhihu.com/question/20447622
原创
2022-06-09 13:27:46
69阅读
极大似然估计(Maximum likelihood estimation, 简称MLE)是很常用的参数估计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,...,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。也就是说,如果已
原创
2021-07-21 15:33:40
942阅读
最大似然估计 概率 定义 某个事件发生的可能性,通常知道分布规律以及具体参数的情况下,就可以计算出某个事件发生的概率 似然 定义 给定已知数据来拟合模型,或者说给定某一结果,求某一参数值的可能性 似然函数与概率密度函数 设总体分布 \(f(X;\theta)\),\(x1, ...,x_n\) 是从 ...
转载
2021-11-01 16:36:00
357阅读
2评论