”是对likelihood 的一种较为贴近文言文的翻译.“”用现代的中文来说即“可能性”。 函数设总体X服从分布P(x;θ)(当X是连
原创 2023-11-07 14:03:54
222阅读
例子1:抽球举个通俗的例子:假设一个袋子装有白球与红球,比例未知,现在抽取10次(每次抽完都放回,保证事件独立性),假设抽到了7次白球和3次红球,在此数据样本条件下,可以采用最大估计法求解袋子中白球的比例(最大估计是一种“模型已定,参数未知”的方法)。当然,这种数据情况下很明显,白球的比例是70%,但如何通过理论的方法得到这个答案呢?一些复杂的条件下,是很难通过直观的方式获
文章目录参考资料1. 最大估计1.1 原理1.2 示例2. EM算法2.1 原理2.2 示例 参考资料统计计算中的优化问题1. 最大估计1.1 原理统计中许多问题的计算最终都归结为一个最优化问题, 典型代表是最大估计(MLE)、各种拟估计方法、 非线性回归、惩罚函数方法(如svm、lasso)等。最大估计经常需要用最优化算法计算, 最大估计问题有自身的特点, 可以直接用一
参数估计(Parameter Estimation)。常用的估计方法有 最大估计、最大后验估计、贝叶斯估计等。x=(x1,…,xn)是来自概率密度函数p(x|θ)的独立采样,则其乘积 p(x|θ)=∏i=1np(xi|θ) θ给定时,p(x|θ)是样本x的联合密度函数;当样本x的观察值给定时,p(x|θ)是未知参数θ的函数,称为样本的函数,常记作L(θ)。对数函数 ℓ(θ)=lnL(
目录极大估计最大原理极大估计函数极大函数估计值求解极大函数未知参数只有一个位置参数有多个总结极大估计最大原理极大估计  极大估计是建立在最大原理的基础上的一个统计方法。极大估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大估计。  简而
一、引入  极大估计,我们也把它叫做最大估计(Maximum Likelihood Estimation),英文简称MLE。它是机器学习中常用的一种参数估计方法。它提供了一种给定观测数据来评估模型参数的方法。也就是模型已知,参数未定。   在我们正式讲解极大估计之前,我们先简单回顾以下两个概念:概率密度函数(Probability Density function),英文简称pdf
        最普遍的情况是概率密度函数并不是已知的,在很多的问题中,潜在的概率密度函数必须从可用的数据中估计。例如有时可能知道概率密度函数的类型(高斯、瑞利等),但不知道具体的参数如方差或均值;相反,有时知道一些参数,但不知道概率密度的类型。有各种各样的方法解决这个问题,根据不同的已知信息采取不同的解决办法。这里介绍最大参数估计。  &nb
1.常见的聚类算法1):划分法:k-means2):基于密度的方法:2.EM 算法EM算法是在概率模型中寻找参数的最大估计或者最大后验概率的算法,其中概率模型依赖于无法观测的隐藏变量。EM算法经常用在机器学习和计算机视觉的数据聚类领域。算法步骤:E步:计算期望,利用对隐藏变量的现有估计值,计算其最大估计M步:最大化在E步上求得的最大值来计算参数的值  3.最大
任务描述本关任务:理解最大法的基本原理并解决实际问题。相关知识为了完成本关任务,你需要:理解极大原理;理解并掌握极大法的数学模型。极大原理最大法是建立在极大原理的基础上的一个统计方法。极大原理可以这么描述:一个随机试验如有若干个可能的结果A,B,C...,若在一次试验中,结果 A 出现了,那么可以认为实验条件对A的出现有利,即出现的概率 P(A) 较大。举个简单的例子:
维基百科,自由的百科全书 最大估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 预备知识下边的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。同时,还要求读者熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值或极小值)。 最大估计的原理
       最大法(the method of maximum likelihood)也称极大法,它最早是由高斯所提出的,后来由英国统计学家费歇于1912年在其一篇文章中重新提出,并且证明了这个方法的一些性质.最大估计这一名称也是费歇给的.它是建立在最大原理的基础上的一个统计方法.为了对最大原理有一个直观的认识,我们先来看一个例
1. 说明  最大估计(Maximum Likelihood Estimation, ML)是一种在给定观察数据情况下,来评估模型参数的算法。它属于一种统计方法,用来求一个样本集的相关概率密度函数的参数。   例如:   统计全校人口的身高,我们已知身高服从正态分布(模型已定),但是分布均值与方差未知(参数未知)。1.1 算法概念:  “”模型已定,参数未知“”   给定:模型(参数全部
最近(2020/6/14)模式识别课程 老师让用最大分类法对一个遥感影像进行分类,上有很多大佬都写过类似的文章,本人阅读之后,犹如醍醐灌顶,对这些大佬们的钦佩之情犹如绵绵江水滔滔不绝。此篇博客就简单记录一下 这段时间对MLC 的学习,希望可以帮助到大家。一、预备知识关于MLC,百度百科 中,最大分类(MaximumLikelihood Classification )被定义为 在两类或多类
最大法是一种用于参数估计的统计方法,其核心思想是通过最大函数来找到最有可能生成观测数据的参数值。在这篇博文中,我们将以 Python 为工具,详细探讨如何实现最大法的过程,包括背景知识、实现步骤和工具集成。 在理解最大法的背景之前,先看一下它与其他统计方法的关系图。大家可以看到,最大法在统计学发展史上占据了重要的地位,并且与贝叶斯推断等其他方法形成了鲜明的对比。 ```m
原创 7月前
33阅读
评估器(estimators)从何而来?相较于猜测某个函数可能产生一个好的估计器,然后再分析其偏差和方差,我们更愿意拥有一些原则,可以用来推导针对不同模型的好的估计器的特定函数。最常用的这种原则就是最大原则(maximum likelihood principle)。 一种对最大估计的解释是将其看做是对模型的分布和训练集所定义的实验分布的差异的最小化。差异的程度使用Kl散度来衡量。 最小化
。一、简介最大估计法 是费希尔(Fisher, R. ...
原创 2021-06-30 15:00:41
1462阅读
欢迎点击「算法与编程之美」↑关注我们!本文首发于:"算法与编程之美",欢迎关注,及时了解更多此系列文章。
原创 2022-03-02 11:46:13
421阅读
一文读懂最大估计(附R代码) R语言中的最大估计 最大估计(Maximum likelihood estimation)(通过例子理解) https://blog.csdn.net/qq_39355550/article/details/81809467
最大估计(Maximum Likelihood Estimation,MLE)是一种常用的参数估计方法,用于寻找最有可能生成观测数据的模型参数值。在图像重建中,最大估计可以用来估计生成模型的参数,从而进行图像的重建。最大估计的基本思想是找到使观测数据出现的概率最大的模型参数,即找到使函数最大化的参数值。假设观测数据独立同分布,函数可以表示为所有样本的概率密度函数乘积。具体步骤如
    最大法(Maximum Likelihood,ML)也称为最大估计,也叫极大估计,是一种具有理论性的点估计法,此方法的基本思想是:当从模型总体随机抽取n组样本观测值后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的概率最大,而不是像最小二乘估计法旨在得到使得模型能最好地拟合样本数据的参数估计量。 最大估计是一种统计方法,它用
  • 1
  • 2
  • 3
  • 4
  • 5