1. 说明  最大估计(Maximum Likelihood Estimation, ML)是一种在给定观察数据情况下,来评估模型参数的算法。它属于一种统计方法,用来求一个样本集的相关概率密度函数的参数。   例如:   统计全校人口的身高,我们已知身高服从正态分布(模型已定),但是分布均值与方差未知(参数未知)。1.1 算法概念:  “”模型已定,参数未知“”   给定:模型(参数全部
”是对likelihood 的一种较为贴近文言文的翻译.“”用现代的中文来说即“可能性”。 函数设总体X服从分布P(x;θ)(当X是连
原创 2023-11-07 14:03:54
222阅读
   最大估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法。1、最大估计(MLE)   在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计。   也就
文章目录参考资料1. 最大估计1.1 原理1.2 示例2. EM算法2.1 原理2.2 示例 参考资料统计计算中的优化问题1. 最大估计1.1 原理统计中许多问题的计算最终都归结为一个最优化问题, 典型代表是最大估计(MLE)、各种拟估计方法、 非线性回归、惩罚函数方法(如svm、lasso)等。最大估计经常需要用最优化算法计算, 最大估计问题有自身的特点, 可以直接用一
例子1:抽球举个通俗的例子:假设一个袋子装有白球与红球,比例未知,现在抽取10次(每次抽完都放回,保证事件独立性),假设抽到了7次白球和3次红球,在此数据样本条件下,可以采用最大估计法求解袋子中白球的比例(最大估计是一种“模型已定,参数未知”的方法)。当然,这种数据情况下很明显,白球的比例是70%,但如何通过理论的方法得到这个答案呢?一些复杂的条件下,是很难通过直观的方式获
概率是指基于模型中参数指定的值,特定结果发生的概率,我们相信参数值是准确的。指的是样本对参数模型中给定参数提供的样本数据确定模型的参数值。作者:Pratik Shukla。
原创 2024-05-15 10:39:15
87阅读
参数估计(Parameter Estimation)。常用的估计方法有 最大估计、最大后验估计、贝叶斯估计等。x=(x1,…,xn)是来自概率密度函数p(x|θ)的独立采样,则其乘积 p(x|θ)=∏i=1np(xi|θ) θ给定时,p(x|θ)是样本x的联合密度函数;当样本x的观察值给定时,p(x|θ)是未知参数θ的函数,称为样本的函数,常记作L(θ)。对数函数 ℓ(θ)=lnL(
目录极大估计最大原理极大估计函数极大函数估计值求解极大函数未知参数只有一个位置参数有多个总结极大估计最大原理极大估计  极大估计是建立在最大原理的基础上的一个统计方法。极大估计提供了一种给定观察数据来评估模型参数的方法,即“模型已定,参数未知”。通过观察若干次实验的结果,利用实验结果得到某个参数值能够使样本出现的概率最大,则称为极大估计。  简而
一直不清楚最大估计具体含义,数学推倒更是看不懂,找到一篇很不错的博文,转载于此分享。贝叶斯决策        首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:         其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率;而为后验概率,表示某事发生
一、引入  极大估计,我们也把它叫做最大估计(Maximum Likelihood Estimation),英文简称MLE。它是机器学习中常用的一种参数估计方法。它提供了一种给定观测数据来评估模型参数的方法。也就是模型已知,参数未定。   在我们正式讲解极大估计之前,我们先简单回顾以下两个概念:概率密度函数(Probability Density function),英文简称pdf
        最普遍的情况是概率密度函数并不是已知的,在很多的问题中,潜在的概率密度函数必须从可用的数据中估计。例如有时可能知道概率密度函数的类型(高斯、瑞利等),但不知道具体的参数如方差或均值;相反,有时知道一些参数,但不知道概率密度的类型。有各种各样的方法解决这个问题,根据不同的已知信息采取不同的解决办法。这里介绍最大参数估计。  &nb
1.常见的聚类算法1):划分法:k-means2):基于密度的方法:2.EM 算法EM算法是在概率模型中寻找参数的最大估计或者最大后验概率的算法,其中概率模型依赖于无法观测的隐藏变量。EM算法经常用在机器学习和计算机视觉的数据聚类领域。算法步骤:E步:计算期望,利用对隐藏变量的现有估计值,计算其最大估计M步:最大化在E步上求得的最大值来计算参数的值  3.最大
期望对数和对应的估计量 我们可以通过计算KL信息来评估给定模型的合适性。 但是,KL信息在真实建模中只能在有限的几个例子中使用,因为KL信息包含了未知分布,这使得KL信息不能被直接计算。KL信息可以被分解为 此外,等式右边的第一项是一个常数,因为它仅仅依赖于真实模型,显然为了比较不同的模型,仅考虑上式的第二项即可。 这一项被称为期望对数(expected log-likelihood).
维基百科,自由的百科全书 最大估计是一种统计方法,它用来求一个样本集的相关概率密度函数的参数。这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的。 预备知识下边的讨论要求读者熟悉概率论中的基本定义,如概率分布、概率密度函数、随机变量、数学期望等。同时,还要求读者熟悉连续实函数的基本技巧,比如使用微分来求一个函数的极值(即极大值或极小值)。 最大估计的原理
任务描述本关任务:理解最大法的基本原理并解决实际问题。相关知识为了完成本关任务,你需要:理解极大原理;理解并掌握极大法的数学模型。极大原理最大法是建立在极大原理的基础上的一个统计方法。极大原理可以这么描述:一个随机试验如有若干个可能的结果A,B,C...,若在一次试验中,结果 A 出现了,那么可以认为实验条件对A的出现有利,即出现的概率 P(A) 较大。举个简单的例子:
       最大法(the method of maximum likelihood)也称极大法,它最早是由高斯所提出的,后来由英国统计学家费歇于1912年在其一篇文章中重新提出,并且证明了这个方法的一些性质.最大估计这一名称也是费歇给的.它是建立在最大原理的基础上的一个统计方法.为了对最大原理有一个直观的认识,我们先来看一个例
最近(2020/6/14)模式识别课程 老师让用最大分类法对一个遥感影像进行分类,上有很多大佬都写过类似的文章,本人阅读之后,犹如醍醐灌顶,对这些大佬们的钦佩之情犹如绵绵江水滔滔不绝。此篇博客就简单记录一下 这段时间对MLC 的学习,希望可以帮助到大家。一、预备知识关于MLC,百度百科 中,最大分类(MaximumLikelihood Classification )被定义为 在两类或多类
最大法是一种用于参数估计的统计方法,其核心思想是通过最大函数来找到最有可能生成观测数据的参数值。在这篇博文中,我们将以 Python 为工具,详细探讨如何实现最大法的过程,包括背景知识、实现步骤和工具集成。 在理解最大法的背景之前,先看一下它与其他统计方法的关系。大家可以看到,最大法在统计学发展史上占据了重要的地位,并且与贝叶斯推断等其他方法形成了鲜明的对比。 ```m
原创 7月前
33阅读
1.什么是参数在机器学习中,我们经常使用一个模型来描述生成观察数据的过程。例如,我们可以使用一个随机森林模型来分类客户是否会取消订阅服务(称为流失建模),或者我们可以用线性模型根据公司的广告支出来预测公司的收入(这是一个线性回归的例子)。每个模型都包含自己的一组参数,这些参数最终定义了模型本身。我们可以把线性模型写成 y = mx + c 的形式。在广告预测收入的例子中,x 可以表示广告支出,y
  • 1
  • 2
  • 3
  • 4
  • 5