什么是(entropy)?1.1 的引入    事实上,的英文原文为entropy,最初由德国物理学家鲁道夫·克劳修斯提出,其表达式为:    它表示一个系系统在不受外部干扰时,其内部最稳定的状态。后来一中国学者翻译entropy时,考虑到entropy是能量Q跟温度T的商,且跟火有关,便把entropy形象的翻译成“”。&nbs
# 使用Python实现交叉函数 交叉是机器学习中常用的损失函数,尤其是在分类问题中。它衡量了两个概率分布之间的差异,尤其是一个分布是模型的输出,而另一个分布是真实标签。在这篇文章中,我将引导你一步一步地用Python实现交叉函数。 ## 流程概述 下面是实现交叉函数的主要步骤: | 步骤 | 描述 | | ---- | ---- | | 1 | 导入必要的库 | | 2
原创 2024-08-29 08:59:21
80阅读
前言说明:本文只讨论Logistic回归的交叉,对Softmax回归的交叉类似。 minist手写数字识别就是用交叉作为代价函数。 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为:其中y是我们期望的输出,a为神经元的实际输出【 a=σ(z), where z=wx+b 】
一、分类问题损失函数——交叉(crossentropy)交叉刻画了两个概率分布之间的距离,是分类问题中使用广泛的损失函数。给定两个概率分布p和q,交叉刻画的是两个概率分布之间的距离: 我们可以通过Softmax回归将神经网络前向传播得到的结果变成交叉要求的概率分布得分。在TensorFlow中,Softmax回归的参数被去掉了,只是一个额外的处理层,将神经网络的输出变成一个概率分
转载 2023-10-18 17:44:53
408阅读
  在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数。假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地训练迭代,使得a越来越接近y,即 a - y →0,而训练的本质就是寻找损失函数最小值的过程。  常见的损失函数为两种,一种是均方差函数,另一种是交叉函数。对于深度学习而言,交叉函数
转载 2024-01-19 15:55:19
126阅读
习题 2-1 分析为什么平方损失函数不适用于分类问题 , 交叉损失函数不适用于回归问题.平方损失函数:       平方损失函数较为容易理解,它直接测量机器学习模型的输出与实际结果之间的距离,为学习模型的输出,为实际结果。交叉损失函数:        交叉是用来评估当前训练得到的概率分布与真实分布的差异情况,减少
文章目录前言一、交叉是什么?二、解决sigmoid激活函数的问题2.1.sigmoid损失函数存在的问题2.2.构造新函数——交叉三、从极大似然估计推导四、从KL散度推导总结 前言最近在学习自然语言处理,其中大量模型涉及到了用softmax层作为输出,再用交叉(cross-entropy loss)作为损失函数。 在此回忆一下交叉损失函数,并从3个方面:为了解决sigmoid激活函数的问
机器学习优化中的交叉及改进形式   【摘要】目前分类问题广泛的应用到我们的实际生活中[1],因而我们应该研究如何分类,研究它的算法。交叉通常在机器学习的分类问题中用作损失函数来判断分类模型的优劣,即把交叉当做损失函数。在实际的使用过程中,有时会不加区分交叉和相对,或者说用交叉代替相对。本文将从三个方面对机器学习优化中的交叉进行综述,分别是交叉的定义和理论推导,交
深度学习中交叉损失函数背景,公式推导详解首先,我们来看下交叉损失函数的表达式: 其中上面那个方程式是用于计算最后一层激活函数为softmax函数的交叉损失函数,下面这个是用于计算最后一层激活函数为sigmoid函数的交叉损失函数。 下面我将从为什么使用交叉函数、交叉函数数学推导、为什么对于sigmoid和softmax两个函数的交叉损失函数有差别这三个方面来讲讲我的理解:一、为什么使
分类问题中,预测结果是(或可以转化成)输入样本属于n个不同分类的对应概率。比如对于一个4分类问题,期望输出应该为 g0=[0,1,0,0] ,实际输出为 g1=[0.2,0.4,0.4,0] ,计算g1与g0之间的差异所使用的方法,就是损失函数,分类问题中常用损失函数是交叉。交叉(cross entropy)描述的是两个概率分布之间的距离,距离越小表示这
目录标题常见的损失函数1、分类任务1.1 多分类任务1.2 二分类任务2、 回归任务2.1 MAE损失2.2 MSE损失2.3 smooth L1损失总结 常见的损失函数损失函数:衡量模型参数的质量的函数,衡量方式是比较网络输出和真实输出的差异。ybar与y 之间的差异 损失函数、代价函数、目标函数、误差函数 虽然叫法不同,但都是一样的。1、分类任务在分类任务中最多使用的是交叉损失函数,下面分
欢迎来到theFlyer的博客—希望你有不一样的感悟前言:交叉损失函数。1. 损失函数机器学习算法都或多或少的依赖于对目标函数最大化或者最小化的过程,常常把最小化的函数称为损失函数,它主要用于衡量机器学习模型的预测能力。损失函数可以看出模型的优劣,提供了优化的方向,但是没有任何一种损失函数适用于所有的模型。损失函数的选取依赖于参数的数量、异常值、机器学习算法、梯度下降的效率、导数求取的难易和预测
交叉损失函数是用来度量两个概率分布间的差异性,有关交叉损失函数的原理在这篇博客中讲解得很好。而本文主要对以下几种tensorflow中常用的交叉损失函数进行比较和总结:tf.losses.sigmoid_cross_entropytf.nn.sigmoid_cross_entropy_with_logitstf.losses.softmax_cross_entropytf.nn.softma
转载 2024-01-30 03:27:34
160阅读
之前我在(一)中说,分类不采用平方差作为损失函数的原因是损失函数是一个非凸函数,容易陷入局部最优,不利于找到相对的全局最优解。这样的解释我感觉太宽泛。今天我换种思路理解下不采用MSE的原因:首先理解“交叉“:我最开始接触的概念是在高中化学中,一个描述化学反应体系混乱度的物理量,大学接触是在信息论中,变为了衡量信息量多少的物理量。而在深度学习损失函数中的,我理解的应该和信息论差不多,用来衡量信
信息论交叉是信息论中的一个概念下面将介绍信息量、、相对(KL散度)、交叉这四个概念。1. 信息量假设是一个离散型随机变量,其取值集合为,其概率分布函数, 则定义事件的信息量为: 图像如下:横轴:; 纵轴: 【(横轴代表事件发生的概率,范围[0,1],所以上面的信息量与图像只取下图中的粉色段)】事件x发生的概率越大,其包含的信息量越少 2. 计算方法
1. 香农(Shannon entropy)信息(又叫香农)反映了一个系统的无序化(有序化)程度,一个系统越有序,信息就越低,反之就越高。如果一个随机变量 XX 的可能取值为 X={x1,x2,…,xn}X={x1,x2,…,xn},对应的概率为 p(X=xi)p(X=xi),则随机变量 XX 2. 相对(relative entrop
在pytorch当中,有两种方式可以实现交叉,而我们把softmax概率传入传入对数似然损失得到的损失函数叫做“交叉损失”在pytorch当中有两种方法实现交叉损失:实现方式1:criterion=nn.CrossEntropyLoss() loss=criterion(input,target)实现方式2:#对输出值进行计算softmax,并取对数,而这个output是需要在神经网络模型的
转载 2023-06-20 17:24:04
365阅读
        cross_entropy函数是pytorch中计算交叉函数。根据源码分析,输入主要包括两部分,一个是input,是维度为(batch_size,class)的矩阵,class表示分类的数量,这个就表示模型输出的预测结果;另一个是target,是维度为(batch_size)的一维向量,表示每个样本
交叉损失函数是机器学习中一个常见的损失函数,用来衡量目标与预测值之间的差距,看着公式能感觉到确实有种在衡量差距的感觉,但是又说不出为什么有这种作用。下面从信息量-信息-交叉的步骤来看交叉公式的意义。信息量信息量是我们能获得未知信息的多少,比如我说周杰伦某天开演唱会,这件事信息量就很小,因为演唱会哪天开已经公布了,这件事发生的概率很大,不用我说你也知道。但是我如果说周杰伦出轨了,这件事的信息
说起交叉损失函数「Cross Entropy Loss」,我们都不陌生,脑海中会马上浮现出它的公式:我们已经对这个交叉函数的形式非常熟悉,多数情况下都是直接拿来使用。那么,它是怎么来的?为什么它能表征真实样本标签和预测概率之间的差值?上面的交叉函数是否有其它变种?接下来我将尽可能通俗地回答上面这几个问题。(一)交叉损失函数的数学原理我们知道,在二分类问题模型,例如逻辑回Logistic R
  • 1
  • 2
  • 3
  • 4
  • 5