cross_entropy函数是pytorch中计算交叉熵的函数。根据源码分析,输入主要包括两部分,一个是input,是维度为(batch_size,class)的矩阵,class表示分类的数量,这个就表示模型输出的预测结果;另一个是target,是维度为(batch_size)的一维向量,表示每个样本
转载
2023-08-29 07:27:51
424阅读
在pytorch当中,有两种方式可以实现交叉熵,而我们把softmax概率传入传入对数似然损失得到的损失函数叫做“交叉熵损失”在pytorch当中有两种方法实现交叉熵损失:实现方式1:criterion=nn.CrossEntropyLoss()
loss=criterion(input,target)实现方式2:#对输出值进行计算softmax,并取对数,而这个output是需要在神经网络模型的
转载
2023-06-20 17:24:04
365阅读
# 用Python计算交叉熵
## 什么是交叉熵
交叉熵(Cross-entropy)是信息理论中的一个重要概念,主要用于衡量两个概率分布之间的差异性。在机器学习和深度学习中,交叉熵常常作为损失函数来衡量模型预测结果与真实标签之间的差异。
交叉熵的定义如下:
表示真实的概率分布,q(x)表示模型的预测概率分布。
## 交叉熵的计算
在Python中,我们可以使
原创
2023-07-24 01:12:08
685阅读
二分类问题的交叉熵 在二分类问题中,损失函数(loss function)为交叉熵(cross entropy)损失函数。对于样本点(x,y)来说,y是真实的标签,在二分类问题中,其取值只可能为集合{0, 1}. 我们假设某个样本点的真实标签为yt, 该样本点取yt=1的概率为yp, 则该样本点的损失函数为 −log(yt|yp)=−(ytlog(yp)+(1−yt)log(1−yp))
转载
2023-08-24 12:15:21
94阅读
通过上一篇 13 驯兽师:神经网络调教综述,对神经网络的调教有了一个整体印象,本篇从学习缓慢这一常见问题入手,根据Michael Nielsen的《Neural Networks and Deep Learning》chap3 Improving the way neural networks learn中的建议,引入交叉熵损失函数,并分析它是如何克服学习缓慢问题。 “严
转载
2024-08-23 09:14:55
76阅读
在机器学习中一些分类问题通常以交叉熵作为损失函数,有必要系统的了解一下熵与交叉熵。1. 熵 熵是一个很抽象的概念,在百度百科中的解释是–熵本质是一个系统“内在的混乱程度”。 更具体地,可以理解为一件事发生概率P的确定性。比如当P=0一定不发生或者P=1一定发生时,熵最小为0;当P=0.5最不确定发生或者不发生时熵最大为1。即一件事情越难猜测发生或者不发生时熵就越大,越好猜测的熵就越小。熵的公式:H
转载
2024-04-17 16:09:05
61阅读
文章目录前言第四章 交叉熵方法强化学习方法的分类实用的交叉熵交叉熵法实践:玩CartPole小游戏交叉熵的理论背景总结 前言重读《Deep Reinforcemnet Learning Hands-on》, 常读常新, 极其深入浅出的一本深度强化学习教程。 本文的唯一贡献是对其进行了翻译和提炼, 加一点自己的理解组织成一篇中文笔记。原英文书下载地址: 传送门 原代码地址: 传送门第四章 交叉熵方
写在前面:要学习深度学习,就不可避免要学习Tensorflow框架。初了解Tensorflow的基础知识,看到众多API,觉得无从下手。但是到了阅读完整项目代码的阶段,通过一个完整的项目逻辑,就会让我们看到的不只是API,而是API背后,与理论研究相对应的道理。除了Tens orflow中文社区的教程,最近一周主要在阅读DCGAN的代码(Github:https://github.com/carp
转载
2023-12-21 11:41:05
172阅读
文章目录rl分类方法:交叉熵简要介绍交叉熵应用在CartPole中(代码内有简要说明)交叉熵方法在FrozenLake中的应用 rl分类方法:写在前面:交叉熵属于无模型和基于策略的在线策略方法 所有RL方法的分类方法: 1.无模型或基于模型:无模型表示该方法不构建环境或奖励的模型,直接将观察和动作连接起来(智能体获取当前观察结果并对其进行一些计算,计算结果就是他应该采取的动作)。基于模型的方法试
转载
2023-12-18 22:44:57
100阅读
信息论交叉熵是信息论中的一个概念下面将介绍信息量、熵、相对熵(KL散度)、交叉熵这四个概念。1. 信息量假设是一个离散型随机变量,其取值集合为,其概率分布函数, 则定义事件的信息量为: 图像如下:横轴:; 纵轴: 【(横轴代表事件发生的概率,范围[0,1],所以上面的信息量与图像只取下图中的粉色段)】事件x发生的概率越大,其包含的信息量越少 2. 熵计算方法
转载
2024-05-29 08:01:07
38阅读
关于交叉熵在loss函数中使用的理解交叉熵(cross entropy)是深度学习中常用的一个概念,一般用来求目标与预测值之间的差距。以前做一些分类问题的时候,没有过多的注意,直接调用现成的库,用起来也比较方便。最近开始研究起对抗生成网络(GANs),用到了交叉熵,发现自己对交叉熵的理解有些模糊,不够深入。遂花了几天的时间从头梳理了一下相关知识点,才算透彻的理解了,特地记录下来,以便日
转载
2023-08-21 02:33:12
87阅读
sigmoid 函数结合交叉熵反向传播推导
sigmoid(x) 函数定义:\[\begin{align*}\sigma(x) &= \frac{1}{1+e^{-x}} \\
{\sigma \prime (x)} &= \sigma(x)(1-\sigma(x))
\end{align*}
\]令 \(z=w \cdot x\), 逻
转载
2023-07-03 20:31:46
90阅读
# 计算交叉熵损失的Python
在机器学习和深度学习领域,损失函数是评估模型预测与实际标签之间差异的核心工具。交叉熵损失函数(Cross-Entropy Loss)是分类问题中最常用的损失函数之一,特别适合于多分类问题。
本文旨在介绍计算交叉熵损失的Python实现,并配合相应的代码示例进行说明。
## 交叉熵损失的理解
交叉熵损失衡量的是两个概率分布之间的差异。在机器学习中,我们通常用
欢迎来到theFlyer的博客—希望你有不一样的感悟前言:交叉熵损失函数。1. 损失函数机器学习算法都或多或少的依赖于对目标函数最大化或者最小化的过程,常常把最小化的函数称为损失函数,它主要用于衡量机器学习模型的预测能力。损失函数可以看出模型的优劣,提供了优化的方向,但是没有任何一种损失函数适用于所有的模型。损失函数的选取依赖于参数的数量、异常值、机器学习算法、梯度下降的效率、导数求取的难易和预测
转载
2023-11-23 18:41:56
88阅读
目录0. 前言1.损失函数(Loss Function)1.1 损失项1.2 正则化项2. 交叉熵损失函数2.1 softmax2.2 交叉熵 0. 前言有段时间没写博客了,前段时间主要是在精读一些计算机视觉的论文(比如yolov1),以及学cs231n这门AI和计算机视觉领域的经典课程。我发现很多事情不能着急,质变需要量变的积累,违背事物发展的客观规律,往往适得其反。今天在学习cs231n的时
声明1,本文整体偏向小白风。
2,尽量少贴公式,就讲下原理。我觉得讲清交叉熵根本不需要一堆公式和各种术语。前言交叉熵损失常用于分类任务。
优点是误差较大时,学习速度较快。
本文以pytorch中自带的实现函数为依据,解释下交叉熵损失的计算过程。二分类任务单样本以minst数据集识别为例,就是一个典型的多分类任务。 经过网上搜索,一通复制黏贴,网络计算,最终输出维度应该是10(对应十分类,下文用ou
转载
2023-12-18 23:05:56
262阅读
之前虽然使用过cross-entropy函数,但是并不知道它代表的实际意义,只是知道的其能够进行loss计算,这次从其根源的意义做一个总结,来加深对cross-entropy的理解;一、熵对于交叉熵,我们首先要直到熵神马意思;熵的意义是一个事件A的自信息量,也就是A包含多少信息。对于事件A,越难发生,发生的概率越小,包含的信息量就越大; 例如,中国队世界杯夺冠,巴西队世界杯夺冠,肯定前者包含的信息
转载
2024-06-13 18:36:59
39阅读
交叉熵损失函数是机器学习中一个常见的损失函数,用来衡量目标与预测值之间的差距,看着公式能感觉到确实有种在衡量差距的感觉,但是又说不出为什么有这种作用。下面从信息量-信息熵-交叉熵的步骤来看交叉熵公式的意义。信息量信息量是我们能获得未知信息的多少,比如我说周杰伦某天开演唱会,这件事信息量就很小,因为演唱会哪天开已经公布了,这件事发生的概率很大,不用我说你也知道。但是我如果说周杰伦出轨了,这件事的信息
转载
2024-08-14 09:38:04
41阅读
交叉熵(Cross-Entropy)交叉熵是一个在ML领域经常会被提到的名词。在这篇文章里将对这个概念进行详细的分析。1.什么是信息量?假设是一个离散型随机变量,其取值集合为,概率分布函数为p ( x ) = r ( = x ) , x ∈ ,我们定义事件= 
机器学习基础--信息论相关概念总结以及理解目录机器学习基础--信息论相关概念总结以及理解1. 信息量(熵)2. KL散度3. 交叉熵4. JS散度摘要:熵(entropy)、KL 散度(Kullback-Leibler (KL) divergence)和交叉熵(cross-entropy)以及JS散度,在深度学习以及机器学习很多地方都用的到,尤其是对于目标函数和损失函数的定义。在逻辑回归问题中,目