小白目前经手的科研课题涉及到在编码解码过程中增加各类噪声和相关滤波的处理,涉及到了一些算子处理,所以一边学习一边记录:若博文有不妥之处,望加以指点,笔者一定及时修正。 文章目录① Sobel算子② Laplace算子③ 参考博客 ① Sobel算子边缘是图像上灰度级变化很快的点的集合。那如何在图像上找到这些点呢?高数中,我们知道如果函数点变化很快,其导数越大。也就是导数越大的地方越有可能是边缘。但
转载
2023-11-14 22:35:58
475阅读
GDAL 图像锐化简介拉普拉斯(Laplace)算子部分代码:索贝尔(Sobel)算子部分代码:处理效果原图(Laplace)(Sobel)结尾参考文章 简介图像锐化(image sharpening)是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,分为空间域处理和频域处理两类。图像锐化是为了突出图像上地物的边缘、轮廓,或某些线性目标要素的特征。这种滤波方法提高了地物边缘与周围
转载
2023-08-17 16:28:30
143阅读
拉普拉斯算子进行图像增强,以及算法优化 环境:vs2017 + OpenCV3.4.1 步骤: (1)新建工程LapFilter (2)确定项目阶段 (3)FFT变换部分w = getOptimalDFTSize(gray_image.cols);//将输入图像延展到最佳尺寸,用0填充
h = getOptimalDFTSize(gray_image.rows);//将输入图像延展到最佳尺寸,用
转载
2024-04-10 08:41:05
167阅读
拉普拉斯变换的定义和收敛域笔者复习时着重强调概念和定义的感性认知,这里只包括拉普拉斯变换的定义和收敛域。拉普拉斯变换的定义拉普拉斯变换的定义来源于傅里叶变换的定义 首先给出傅里叶变换的公式这一对公式的存在是有条件的,即对f(t)是有条件的,要求其绝对可积(必要非充分) 而对于一些绝对不可积信号,他们是一定不存在傅里叶变换的,但是这些信号经过自身与指数信号的衰减信号的乘积得到的新的信号是满足绝对可积
转载
2023-10-13 23:28:58
107阅读
拉普拉斯矩阵是个非常巧妙的东西,它是描述图的一种矩阵,在降维,分类,聚类等机器学习的领域有很广泛的应用。什么是拉普拉斯矩阵拉普拉斯矩阵 先说一下什么是拉普拉斯矩阵,英文名为Laplacian matrix,其具体形式得先从图说起,假设有个无向图如下所示,
其各个点之间的都有相应的边连接,我们用某个指标(这地方可以任意选择,比如欧氏距离、测地距离、或者高斯相似度等
5.5.2 拉普拉斯掩模锐化(1)1.基本理论拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: (5-11)为了更适合于数字图像处理,将该方程表示为离散形式: (5-12)另外,拉普拉斯算子还可以表示成模板的形式,如图5-9所示。图5-9(a)表示离
拉普拉斯变换的定义和收敛域笔者复习时着重强调概念和定义的感性认知,这里只包括拉普拉斯变换的定义和收敛域。拉普拉斯变换的定义拉普拉斯变换的定义来源于傅里叶变换的定义 首先给出傅里叶变换的公式这一对公式的存在是有条件的,即对f(t)是有条件的,要求其绝对可积(必要非充分) 而对于一些绝对不可积信号,他们是一定不存在傅里叶变换的,但是这些信号经过自身与指数信号的衰减信号的乘积得到的新的信号是满足绝对可积
转载
2023-10-13 23:28:58
109阅读
拉普拉斯Python是一款强大的数学工具,特别是在处理符号计算、数值分析,以及概率统计等方面表现突出。它不仅支持复杂的数学表达式,还提供了丰富的库和功能,使其在数据科学、机器学习和工程计算等领域尤为流行。在这篇文章中,我们将深入探讨“拉普拉斯Python”问题的解决方案,并以轻松的口吻带你了解这一过程的核心要素与实现细节。
## 适用场景分析
首先,拉普拉斯Python 的应用场景非常广泛。它
在图像增强中,平滑是为了消除图像中噪声的干扰,或者降低对比度,与之相反,有时为了强调图像的边缘和细节,需要对图像进行锐化,提高对比度。图的边缘是指在局部不连续的特征。简要介绍一下原理: 拉普拉斯锐化图像是根据图像某个像素的周围像素到此像素的突变程度有关,也就是说它的依据是图像像素的变化程度。我们知道,一个函数的一阶微分描述了函数图像是朝哪里变化
转载
2023-11-02 09:47:39
218阅读
转载
2020-02-12 13:51:42
97阅读
先上个简单的示例,看MATLAB中拉普拉斯滤波器是如何实现的:令原图f=magic(3)
f =
8 1 6
3 5 7
4 9 2掩膜采用标准Laplacian掩膜:w=fspecial(‘laplacian’,0)
w =
0 1 0
1 -4 1
0 1 0n=imfilter(f,w,‘replicate’);默认参数为’same’,结果为:
n =
-12 16 -4
8
转载
2023-09-25 11:16:06
354阅读
数学定义: 函数f与g的卷积记作f*g,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数 积分区间取决于f与g的定义域 对于离散域的函数,卷积的定义: 1.卷积是求累积值,就是某一时刻的反应,
转载
2023-11-02 18:21:04
74阅读
主要内容:图像的表示----介绍图像是如何表示的,以及所有基本操作的作用对象高斯滤波-----滤波操作的原理与应用图像金字塔-----高斯和拉普拉斯边缘检测-----Sobel算子和Laplace算子 1、图像的表示 图像是由一个个的像素表示的,一个图像的像素点可以用 (x,y) 来表示位置,v来表示像素值(灰度图像
转载
2024-01-05 23:45:21
231阅读
边缘提取,或者说边缘检测,可以有很多方法,可以使用各种算子,其实就是说的模板操作,这些算子得到的边缘具有一定的厚度,还需要进行下一步的处理,CANNY算子是比较近的,性能比较好,而且提出了边缘检测的标准;可以使用形态学操作,得到的边缘是单个像素的,而且速度比较快。这个学习过程中,首先介绍一些边缘检测的算子,然后是基于形态学的检测方法,并最比较。
拉普拉
转载
2023-12-06 15:07:51
76阅读
一.定义 拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。(摘自百度百科) 如果f是二阶可微的实函数,则f的拉普拉斯算子定义为: f的拉普拉斯算子也是笛卡尔坐标系xi中的所有非混合二阶偏导数: 对于二维空间上:(x与y代表 x-y 平面上的笛卡尔坐标)二.机器学习中应用 1.作为具有旋转不变性的各向同性算子,拉普拉斯算子广
转载
2023-09-27 16:27:50
247阅读
机器学习MATLAB实现:Matlab-梯度Roberts算子、拉普拉斯算子、Sobel算子、Prewitt算子对图像进行锐化 目录标题机器学习MATLAB实现:Matlab-梯度Roberts算子、拉普拉斯算子、Sobel算子、Prewitt算子对图像进行锐化1. 锐化2. 梯度运算3. 边缘检测的分类4. Roberts算子5. sobel算子6. Prewitt算子7. 拉普拉斯算子8. m
转载
2024-05-13 22:11:17
116阅读
基本问题普遍的应用是对一个三维物体推动或拉动某一处,求出三维物体最后会变形成什么样。 如上图所示:以一个表面为例,S是一个完整的三角网格。现在固定住最外圈的F部分。顶部黄色H是可以拖动的部分,现在将H拖动到某个地方,问整个网格形变最终结果。拉普拉斯算子都有一个拉普拉斯算子拉普拉斯算子蕴含着曲面的局部特征信息,网格曲面的拉普拉斯坐标其在网格变形、网格平滑、网格去噪等方面都有着重要的应用。能量方程构建
转载
2023-12-25 14:57:54
120阅读
摘要:Laplace 用于 Laplace 分布的概率统计与随机采样。作者:李长安。1、任务解析详细描述:Laplace 用于 Laplace 分布的概率统计与随机采样, 此任务的目标是在 Paddle 框架中,基于现有概率分布方案进行扩展,新增 Laplace API,调用路径为:paddle.distribution.Laplace 。类签名及各个方法签名,请通过调研 Paddle 及业界实现
转载
2024-05-14 16:42:05
175阅读
《laplace(拉普拉斯)锐化matlab程序》由会员分享,可在线阅读,更多相关《laplace(拉普拉斯)锐化matlab程序(6页珍藏版)》请在技术文库上搜索。1、第二次作业第二次作业201321050326 程小龙 习题: 4.8答:参考教材 4.4-1 式,高通滤波器可以看成是 1 减去相应低通滤波器,从低通滤波器的 性质可以看出,在空间域上低通滤波器在原点是存在一个尖峰,且大于 0,1
转载
2023-10-19 17:24:09
106阅读
在分类数据拟合优度的
检验中,我们构造的检验统计量为:
该统计量
服从
的
分布。其中,
为某分类实际频数,
为零假设中的期望频数,
为分类类别的数量。
对于分类数据的拟合优度
检验,很多统计教科书介绍完上面这些就结束了。但相信初学者,尤其
转载
2023-09-08 16:03:20
98阅读