拉普拉斯矩阵是个非常巧妙的东西,它是描述图的一种矩阵,在降维,分类,聚类等机器学习的领域有很广泛的应用。什么是拉普拉斯矩阵拉普拉斯矩阵 先说一下什么是拉普拉斯矩阵,英文名为Laplacian matrix,其具体形式得先从图说起,假设有个无向图如下所示,
其各个点之间的都有相应的边连接,我们用某个指标(这地方可以任意选择,比如欧氏距离、测地距离、或者高斯相似度等
拉普拉斯矩阵(Combinatorial Laplacian) 拉普拉斯矩阵(Laplacian matrix)也叫做导纳矩阵、基尔霍夫矩阵或离散拉普拉斯算子,主要应用在图论中,作为一个图的矩阵表示。 给定一个有 $n$ 个顶点的图 $G$,它的拉普拉斯矩阵: $L=D-A$ 其中 $D$ 为图的度 ...
转载
2021-09-22 20:08:00
1890阅读
2评论
前言前面分析了非负矩阵分解(NMF)的应用,总觉得NMF与谱聚类(Spectral clustering)的思想很相似,打算分析对比一下。谱聚类更像是基于图(Graph)的思想,其中涉及到一个重要概念就是拉普拉斯矩阵(Laplace matrix),想着先梳理一下这个矩阵: 1)拉普拉斯矩阵基本定义 2)拉普拉斯矩阵意义及性质 3)瑞利熵(Rayleigh quotient)内容为自己的学习
转载
2023-12-04 04:53:43
400阅读
拉普拉斯变换的定义和收敛域笔者复习时着重强调概念和定义的感性认知,这里只包括拉普拉斯变换的定义和收敛域。拉普拉斯变换的定义拉普拉斯变换的定义来源于傅里叶变换的定义 首先给出傅里叶变换的公式这一对公式的存在是有条件的,即对f(t)是有条件的,要求其绝对可积(必要非充分) 而对于一些绝对不可积信号,他们是一定不存在傅里叶变换的,但是这些信号经过自身与指数信号的衰减信号的乘积得到的新的信号是满足绝对可积
转载
2023-10-13 23:28:58
107阅读
小白目前经手的科研课题涉及到在编码解码过程中增加各类噪声和相关滤波的处理,涉及到了一些算子处理,所以一边学习一边记录:若博文有不妥之处,望加以指点,笔者一定及时修正。 文章目录① Sobel算子② Laplace算子③ 参考博客 ① Sobel算子边缘是图像上灰度级变化很快的点的集合。那如何在图像上找到这些点呢?高数中,我们知道如果函数点变化很快,其导数越大。也就是导数越大的地方越有可能是边缘。但
转载
2023-11-14 22:35:58
475阅读
拉普拉斯变换的定义和收敛域笔者复习时着重强调概念和定义的感性认知,这里只包括拉普拉斯变换的定义和收敛域。拉普拉斯变换的定义拉普拉斯变换的定义来源于傅里叶变换的定义 首先给出傅里叶变换的公式这一对公式的存在是有条件的,即对f(t)是有条件的,要求其绝对可积(必要非充分) 而对于一些绝对不可积信号,他们是一定不存在傅里叶变换的,但是这些信号经过自身与指数信号的衰减信号的乘积得到的新的信号是满足绝对可积
转载
2023-10-13 23:28:58
109阅读
5.5.2 拉普拉斯掩模锐化(1)1.基本理论拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: (5-11)为了更适合于数字图像处理,将该方程表示为离散形式: (5-12)另外,拉普拉斯算子还可以表示成模板的形式,如图5-9所示。图5-9(a)表示离
拉普拉斯Python是一款强大的数学工具,特别是在处理符号计算、数值分析,以及概率统计等方面表现突出。它不仅支持复杂的数学表达式,还提供了丰富的库和功能,使其在数据科学、机器学习和工程计算等领域尤为流行。在这篇文章中,我们将深入探讨“拉普拉斯Python”问题的解决方案,并以轻松的口吻带你了解这一过程的核心要素与实现细节。
## 适用场景分析
首先,拉普拉斯Python 的应用场景非常广泛。它
转载
2020-02-12 13:51:42
97阅读
在图像增强中,平滑是为了消除图像中噪声的干扰,或者降低对比度,与之相反,有时为了强调图像的边缘和细节,需要对图像进行锐化,提高对比度。图的边缘是指在局部不连续的特征。简要介绍一下原理: 拉普拉斯锐化图像是根据图像某个像素的周围像素到此像素的突变程度有关,也就是说它的依据是图像像素的变化程度。我们知道,一个函数的一阶微分描述了函数图像是朝哪里变化
转载
2023-11-02 09:47:39
218阅读
文章目录1.拉普拉斯矩阵1.1 简介1.2 性质2. 瑞利熵3.广义瑞利熵4.谱聚类4. Laplacian Eigenmaps 1.拉普拉斯矩阵1.1 简介 拉普拉斯矩阵(Laplacian matrix),也称为基尔霍夫矩阵, 是表示图的一种矩阵。给定一个有n个顶点的图G=(V,E),其拉普拉斯矩阵定义为: 其中W为图G的邻接矩阵,一个的矩阵,记录每个点与其他点是否相邻,相邻则对应的位
目录一、高斯金字塔和下采样二、图像上采样还原图像缺陷三、拉普拉斯金字塔引入四、利用拉普拉斯金字塔无损重建图像五、可视化全过程拉普拉斯金字塔相当于对图像进行带通滤波:越底层频率越高,越顶层频率越低一、高斯金字塔和下采样为了获取层级为 G_i+1 的金字塔图像,我们采用如下方法:<1>对图像G_i进行高斯内核卷积<2>将所有偶数行和列去除得到的图像即为G_i+1的图像,显而易见
转载
2023-12-18 11:47:37
61阅读
功能作用:在图像增强中,平滑是为了消除图像中噪声的干扰,或者降低对比度,与之相反,有时为了强调图像的边缘和细节,需要对图像进行锐化,提高对比度。图的边缘是指在局部不连续的特征。简要介绍一下原理:拉普拉斯锐化图像是根据图像某个像素的周围像素到此像素的突变程度有关,也就是说它的依据是图像像素的变化程度。我们知道,一个函数的一阶微分描述了函数图像是朝哪里变化的,即增长或者降低;而二阶微分描述的则是图像变
转载
2023-09-27 22:03:42
100阅读
先上个简单的示例,看MATLAB中拉普拉斯滤波器是如何实现的:令原图f=magic(3)
f =
8 1 6
3 5 7
4 9 2掩膜采用标准Laplacian掩膜:w=fspecial(‘laplacian’,0)
w =
0 1 0
1 -4 1
0 1 0n=imfilter(f,w,‘replicate’);默认参数为’same’,结果为:
n =
-12 16 -4
8
转载
2023-09-25 11:16:06
354阅读
数学定义: 函数f与g的卷积记作f*g,它是其中一个函数翻转并平移后与另一个函数的乘积的积分,是一个对平移量的函数 积分区间取决于f与g的定义域 对于离散域的函数,卷积的定义: 1.卷积是求累积值,就是某一时刻的反应,
转载
2023-11-02 18:21:04
74阅读
一.定义 拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f)。(摘自百度百科) 如果f是二阶可微的实函数,则f的拉普拉斯算子定义为: f的拉普拉斯算子也是笛卡尔坐标系xi中的所有非混合二阶偏导数: 对于二维空间上:(x与y代表 x-y 平面上的笛卡尔坐标)二.机器学习中应用 1.作为具有旋转不变性的各向同性算子,拉普拉斯算子广
转载
2023-09-27 16:27:50
247阅读
机器学习MATLAB实现:Matlab-梯度Roberts算子、拉普拉斯算子、Sobel算子、Prewitt算子对图像进行锐化 目录标题机器学习MATLAB实现:Matlab-梯度Roberts算子、拉普拉斯算子、Sobel算子、Prewitt算子对图像进行锐化1. 锐化2. 梯度运算3. 边缘检测的分类4. Roberts算子5. sobel算子6. Prewitt算子7. 拉普拉斯算子8. m
转载
2024-05-13 22:11:17
116阅读
基本问题普遍的应用是对一个三维物体推动或拉动某一处,求出三维物体最后会变形成什么样。 如上图所示:以一个表面为例,S是一个完整的三角网格。现在固定住最外圈的F部分。顶部黄色H是可以拖动的部分,现在将H拖动到某个地方,问整个网格形变最终结果。拉普拉斯算子都有一个拉普拉斯算子拉普拉斯算子蕴含着曲面的局部特征信息,网格曲面的拉普拉斯坐标其在网格变形、网格平滑、网格去噪等方面都有着重要的应用。能量方程构建
转载
2023-12-25 14:57:54
120阅读
拉普拉斯算子是一个二阶算子,比起一阶微分算子,二阶微分算子的边缘定位能力更强,锐化效果更好。使用二阶微分算子的基本方法是定义一种二阶微分的离散形式,然后根据这个形式生成一个滤波模版,与图像进行卷积。滤波器分各向同性滤波器和各向异性滤波器。各向同性滤波器与图像进行卷积时,图像旋转后响应不变,说明滤波器模版自身是对称的。如果是各向异性滤波器,当原图旋转90度时,原图某一点能检测出细节(突变)的,但是现
转载
2023-10-20 17:14:32
70阅读
《laplace(拉普拉斯)锐化matlab程序》由会员分享,可在线阅读,更多相关《laplace(拉普拉斯)锐化matlab程序(6页珍藏版)》请在技术文库上搜索。1、第二次作业第二次作业201321050326 程小龙 习题: 4.8答:参考教材 4.4-1 式,高通滤波器可以看成是 1 减去相应低通滤波器,从低通滤波器的 性质可以看出,在空间域上低通滤波器在原点是存在一个尖峰,且大于 0,1
转载
2023-10-19 17:24:09
106阅读