卡方检验是以χ2分布为基础的一种常用假设检验方法,它的零假设H0是:观察频数与期望频数没有差别。该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。如果P值很小(一般认为是小于5%),说明观察值与理论值偏离程度太大,应当拒绝零假设,表示比较资料之间有显著差异;否则就不
# Python卡方特征检测
卡方特征检测是一种常用的统计方法,用于确定两个分类变量之间是否存在相关性。在机器学习中,我们可以使用卡方特征检测来选择与目标变量相关的特征。本文将介绍卡方特征检测的原理、应用场景以及如何在Python中使用。
## 1. 卡方特征检测的原理
卡方特征检测是通过计算观察值与期望值之间的差异来确定两个分类变量之间的相关性。在进行卡方特征检测之前,我们需要建立一个假设
原创
2023-09-10 08:00:26
161阅读
Spark 1.1.0 Basic Statistics(下) Hypothesis testingHypothesis testing,假设检验。Spark目前支持皮尔森卡方检测(Pearson’s chi-squared tests),包括适配度检定和独立性检定。皮尔森卡方检测皮尔森卡方检测是最著名的卡方检测方法之一,一般提到卡方检测时若无特殊说明则代表使用的是皮尔森卡方检测。皮尔森卡方检测可
卡方检验是一种用途很广的计数资料的假设检验方法。它属于非参数检验的范畴,主要是比较两个及两个以上样本率( 构成比)以及两个分类变量的关联性分析。其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。(更多参考:卡方检验、卡方分布) 不讲过多理论,主要使用 python 实现卡方验证。之前对于元素/特征/属性 异常值的选择情况,可以使用直方图、箱型图、Z分数法等筛选。如&nbs
<此部分理论内容结合统计学教材学习>列联分析1. 收集样本数据产生二维或多维交叉列联表; 2. 对两个分类变量的相关性进行检验(假设检验)pandas.crosstab(index,columns,margins,normalize) - margins默认为False不带合计数据 - normalize=True频率列联表 salary_reform.
转载
2023-10-10 22:40:08
320阅读
卡方检验 Chi-Squarethe chi-square test measures dependence between stochasticvariables, so using this function “weeds out” the features that are themost likely to be independent of class and therefore irr
转载
2024-04-19 19:34:57
598阅读
## Python卡方实现流程
### 1. 数据准备
首先需要准备好用来计算卡方的数据。卡方检验是用来检验两个分类变量之间的关联性的方法,因此需要两个分类变量的数据。
### 2. 数据整理
对于卡方检验,需要将数据整理成一个频数表。频数表是一个二维表格,行表示变量A的各个类别,列表示变量B的各个类别,每个单元格中记录了变量A和变量B同时出现的频数。
### 3. 计算期望频数
计算期望频
原创
2023-12-29 09:50:24
41阅读
统计学第七周一.知识回顾上周已经学习过正态分布/卡方分布/T分布等知识,但是如何选择那??正态分布?卡方分布?T分布二.实践1.场景:泰坦尼克号数据,主要是age年龄,Fare价格即船票价格,Embark登船的港口,需要验证数据是否服从正态分布,T分布,卡方分布?具体数据如下:IDAgeFareEmbarked1227.25S23871.2833C3267.925S43553.1S5358.05S
转载
2024-08-27 14:40:08
108阅读
转自:概率分布之间的距离,顾名思义,度量两组样本分布之间的距离 。1、卡方检验统计学上的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson χ2,其计算公式为 (i=1,2,3,…,k)Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。i水平的期望频数Ei等于总频数n×i水平的期望概率pi。
转载
2024-04-23 13:36:15
62阅读
Last updated on 2020-3-12…本篇是上一篇《python特征工程篇》的一个子集,由于内容较多而单独出一篇。(»原文链接)特征选择特征选择是特征工程里的一个重要问题,其目标是寻找最优特征子集。多维特征一方面可能会导致维数灾难,另一方面很容易导致过拟合,因此需要做降维处理,常见的降维方法有 PCA,t-SNE(计算复杂度很高)。比赛中使用PCA效果通常并不好,因为大多数特征含有缺
转载
2023-10-11 16:40:40
72阅读
什么是卡方检验卡方检验是一种用途很广的基于卡方分布的假设检验方法,其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。其主要应用于分类变量,根据样本数据推断总体分布与期望分布是否有显著差异或推断两个分类变量是否相关或相互独立。卡方检验分类 卡方检验步骤卡方检验可以参照一般假设检验步骤:设置原假设与备择假设设置显著性水平根据问题选择具体的假设检验方式计算统计量
转载
2023-08-10 12:52:15
709阅读
《用十年学编程》(Teach Yourself Programming in Ten Years by Peter Norvig) 里说学习编程的最好方法就是实践,以任务为导向的学习往往更为高效。本文就是这样一个笔记,算不上教程,只不过是菜鸟在记录自己的脚步。如果你恰好不知道怎么做卡方分析,不妨来看一看。什么是卡方分析卡方分析有两个常见的应用——适合度分析和独立性分析。这个笔记着重于适合度分析。从
转载
2023-12-08 12:59:46
31阅读
卡方检验(chi square test)能够是一种假设性检验的方法,它能够检验两个分类变量之间是否是独立无关的。它通过观察实际值和理论值的偏差来确定原假设是否成立,它按照以下步骤来检验两个分类变量是否是独立的。无关性假设假如,有了一些新闻文章,这些新闻的文章已经标好了类别,所以可以得到以下统计的信息。通过下面的表格的第一行和第二行可以得出,文章的内容是否包含“篮球”的确对文章是否是体育类别的有统
转载
2024-01-24 11:32:54
53阅读
统计学,风控建模经常遇到卡方分箱算法ChiMerge。卡方分箱在金融信贷风控领域是逻辑回归评分卡的核心,让分箱具有统计学意义(单调性)。卡方分箱在生物医药领域可以比较两种药物或两组病人是否具有显著区别。但很多建模人员搞不清楚卡方分箱原理。先给大家介绍一下经常被提到的卡方分布和卡方检验是什么。分类变量检验方法 卡方分布绘图 如果多个符合正态分布
转载
2023-11-08 18:08:04
52阅读
转载
2023-11-15 06:49:24
188阅读
one-hot 编码会将原始变量中的每个状态都做为作为一个新的特征,当原始特征状态较多时,数据经过one-hot编码之后特征数量会成倍的增加,同时新特征也会变得过于稀疏。在进行变量筛选的过程中,也会出现原始特征的一部分状态被筛选出来,另一部分状态未被筛选出来,造成特征的不完整。而WOE编码不仅可以解决以上这些问题,同时还可以将特征转化为线性。在建模中,需要对连续变量离散化,特征离散化后,模型会更稳
转载
2023-08-04 12:49:08
232阅读
解决的问题:1、实现了二分类的卡方分箱;2、实现了最大分组限定停止条件,和最小阈值限定停止条件;问题,还不太清楚,后续补充。1、自由度k,如何来确定,卡方阈值的自由度为 分箱数-1,显著性水平可以取10%,5%或1%算法扩展:1、卡方分箱除了用阈值来做约束条件,还可以进一步的加入分箱数约束,以及最小箱占比,坏人率约束等。2、需要实现更多分类的卡方分箱算法;具体代码如下:# -*- coding:
转载
2023-08-14 14:37:40
145阅读
卡方检验,或称x2检验。无关性假设: 假设我们有一堆新闻或者评论,需要判断内容中包含某个词(比如6得很)是否与该条新闻的情感归属(比如正向)是否有关,我们只需要简单统计就可以获得这样的一个四格表:组别 属于正向 不属于正向 合计
不包含6得很 19 24 43
包含6得很 34 10 44
合计 53 34 87通过这个四格表我们得到的第一个信息是:内容是否包含某
转载
2023-08-18 09:00:05
199阅读
统计里面的卡方检验卡方检验主要是用来进行 分类变量(离散变量)的关联性、相关性分析,其根本思想就是在于比较理论频数和实际频数的吻合程度或拟合优度问题。在统计学里面最经典就是四方格检验,下面列举一个例子,让大家对卡方检验有一个真实的认识: 现在我们有一些样本,每个人是否喝牛奶,以及是否感冒,形式如下(只截图了一部分),现在我们想知道,是否喝牛奶 对 是否感冒有影响,根据我们的常识判断,喝牛奶可以增强
转载
2023-08-04 13:47:06
138阅读
一、算法思想1、特征选择特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征,从而获得特征子集,从而以最小的性能损失更好地描述给出的问题。特征选择方法可以分为三个系列:过滤式选择、包裹式选择和嵌入式选择的方法 。本文介绍的卡方检验即为过滤式的特征选择算法。关于过滤式的特征算法系列,可参考我的其他文章。特征选择之互信息特征选择之Fisher Score2、卡方检验卡方检验介绍卡方是由英语"Ch
转载
2023-08-17 17:07:03
41阅读