文章目录4.3.1 连续型随机变量正态(高斯)分布图形特征性质Independent Gaussian
Gaussian
Z = X_1^2 + X_2^2 +...+ X_n^2
Z=X12+X22+...+Xn2复正态(高斯)分布与正态分布相关的函数1. Q函数2. 误差函数(Error Function)3. 互补误差函数(Complementary Error Function
转载
2023-12-12 15:10:39
159阅读
2.3高斯分布高斯分布又称正态分布,被广泛用于连续变量分布的模型。对于单变量x,高斯分布的形式这里表示期望,表示方差。对于一个D维向量X,其多元高斯分布形式为:这里是一个D维均值向量,是的协方差矩阵,表示的行列式。 高斯分布出现在很多应用中并可以从很多角度来阐释。比如,我们已经见过的实单变量使熵最大的分布就是高斯分布。该性质同样适用于多元高斯分布中。
转载
2023-12-14 13:31:04
73阅读
2.3高斯分布高斯分布又称正态分布,被广泛用于连续变量分布的模型。对于单变量x,高斯分布的形式这里表示期望,表示方差。对于一个D维向量X,其多元高斯分布形式为:这里是一个D维均值向量,是的协方差矩阵,表示的行列式。 高斯分布出现在很多应用中并可以从很多角度来阐释。比如,我们已经见过的实单变量使熵最大的分布就是高斯分布。该性质同样适用于多元高斯分布中。
转载
2023-12-14 10:43:03
93阅读
二 数学基础-概率-高斯分布2.1 思维导图简述数学基础-高斯分布思维导图2.2 内容2.2.1 高斯分布的最大似然估计A 已知数据条件:是的列向量,代表一组数据。是N*p维矩阵,表示N组数据。 高斯分布: 一维高斯分布(以一维高斯分布为例)多维高斯分布B 求最大似然估计MLEC 解D 收获最大似然估计MLE: maximum likelihood estimation,由高斯提出,R.A Fis
转载
2023-11-27 21:23:33
146阅读
1 一维高斯分布1.1 一维高斯分布的定义1.2 一维高斯分布的曲线1.3 标准一维高斯分布 2 二维高斯分布2.1 二维高斯分布的定义 2.2 二维高斯分布的曲线3 二维高斯滤波器3.1 高斯滤波器简介高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器
转载
2023-11-27 21:05:13
147阅读
在这个专栏中,我们开篇首先介绍高斯分布,他的重要性体现在两点:第一:依据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,这是在整个工程领域体现出该分布的一种普适性;第二:高斯分布是后续许多模型的根本基础,例如线性高斯模型(卡尔曼滤波)、高斯过程等等。因此我们首先在这一讲当中,结合一元高斯分布,来讨论一下极大似然估计,估计的有偏性、无偏性等基本建模问题。1.极大似然估计问题背
转载
2023-12-19 06:01:10
97阅读
看极化SAR影像时看到矩阵服从复高斯分布,不明白是什么于是查了查。正态分布又叫高斯分布 X~(μ,σ2) , μ为期望(均值),σ2为方差 遥感影像常认为服从正态分布,横坐标是影像灰度级变化,纵坐标为各灰度级像元数占整幅影像像元数的百分比,也就是对应的概率密度。复高斯分布可认为是Z=X+iY中,X,Y同时满足高斯分布,也就是复数满足高斯分布。该原理的数学基础参考下面文章高斯变量和复高斯变量基础复高
转载
2023-12-08 18:05:51
373阅读
高斯分布(Gaussian distribution):又名正态分布(Normal distribution),也称“常态分布” 一维正态分布函数: 卡尔曼滤波(Kalman filtering):一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。 X(k)=A X(k-1)+B U(k)+W(k)极大似然估计方法(Maximum Likelihood Estima
转载
2023-12-14 18:39:11
162阅读
参考文献:Pattern Recognition and Machine Learning Published by Springer | January 2006https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/简介在第二章中将专门研究各种概率分布以及其关键特性。在这
转载
2023-11-16 15:36:31
211阅读
多变量高斯分布先总结一些基本结论。设有随机变量组成的向量\(X=[X_1,\cdots,X_n]^T\),均值为\(\mu\in\mathbb{R}^n\),协方差矩阵\(\Sigma\)为对称正定\(n\)阶矩阵。在此基础上,如果还满足概率密度函数\[p(x;\mu,\Sigma)=\frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}}\exp\
转载
2024-08-11 12:58:01
65阅读
高斯分布(Gaussian distribution) 正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussi
转载
2023-11-10 02:25:56
321阅读
内容来自Andrew老师课程Machine Learning的第九章内容的Multivariate Guassian Distribution(Optional)部分。一、Multivariate Gaussian Distribution(多元高斯分布) 使用高斯分布图,看一个数据中心的例子: 因为上面的原因,会带来一些误差,因此我们引入了改良版的算法: 我们不再单独地将p(x1),
卷积和高斯卷积图片的类型二值化图灰度图彩色图为什么使用卷积?卷积的定义卷积的计算边缘填充边缘填充的作用边缘填充的方式几种特殊的卷积核带来的效果高斯振铃现象如何解决振铃现象--高斯内核(模板)高斯函数的定义高斯模板的性质噪声高斯噪声椒盐噪声高斯滤波&中值滤波总结 卷积图片的类型二值化图 (Binary)灰度图 (Gray Scale)彩色图(Color)二值化图二值化图每一个像素值不是1就
转载
2024-01-29 10:05:26
171阅读
基于统计学的方法掌握关于高斯分布的异常检测一元高斯分布高斯分布也称正态分布, 我们可以利用已有的数据来预测总体中的 和 的计算方法如下:概率密度函数为:选定一个参数ε,将P(x)=ε作为我们的判定边界,当P(x)>ε时预测数据为正常数据,否则为异常。多元高斯分布构建协方差矩阵,使用所有特征来构建p(x)首先我们先计算所有特征的平均值及协方
转载
2024-04-11 16:15:43
81阅读
1 -单变量高斯分布单变量高斯分布概率密度函数定义为:\[p(x)=\frac{1}{\sqrt{2\pi\sigma}}exp\{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\} \tag{1.1}
\]式中\(\mu\)为随机变量\(x\)的期望,\(\sigma^2\)为\(x\)的方差,\(\sigma\)称为标准差:\[\mu=E(x)=\int_{-\inf
这篇博客主要整理的是指数族分布高斯分布首先当然是高斯分布(Gaussian distribution),也叫正态分布(normal distribution)。这是最著名也是最常用的分布了。用均值和方差可以描述高斯,下图为高斯分布。高斯分布在机器学习中应用十分广泛。一般情况下,我们往往假设数据符合高斯分布。比如,当数据符合高斯分布时,最大似然和最小二乘法等价。当数据分布比较复杂,高斯分布不足以描述
转载
2023-11-24 14:56:41
322阅读
机器学习笔记之高斯过程——基本介绍引言高斯过程简单介绍高斯过程的参数描述 引言从本节开始,将介绍高斯过程。高斯过程简单介绍高斯过程(Gaussian Process),从名字中很明显,它是一种和高斯分布相关的随机过程(Stochastic Process)。 从一维高斯分布开始,此时只有一个一维随机变量,它服从的高斯分布可表示为: 如果样本并不是一个特征,而是多个特征,并且这些特征均服从高斯分布
转载
2023-12-21 13:36:25
94阅读
一、概述高斯网络是一种概率图模型,对于普通的概率图模型,其随机变量的概率分布是离散的,而高斯网络的概率分布是连续的高斯分布。高斯网络也分为有向图和无向图,其中有向图叫做高斯贝叶斯网络(Gaussian Bayesian Network,GBN),无向图叫做高斯马尔可夫网络(Gaussian Markov Network,GMN)。概率图模型的分类大致如下:高斯网络概率图中的每个节点都服从高斯分布,
转载
2024-01-15 06:26:04
144阅读
一、多元高斯分布:一元高斯分布的概率密度函数如下所示:而如果我们对随机变量X进行标准化,用对上式进行换元,可得:此时我们可以说随机变量服从一元标准高斯分布,其均值,方差,概率密度函数为:1.1 多元标准高斯分布多元标准高斯分布的概率密度函数是由(2)导出的 且:我们称随机向量,即随机向量服从均值为零向量,协方差矩阵为单位矩阵的高斯分布1.2 多元高斯分布对于普通的随机向量,和其每个随机变量且彼此不
转载
2024-01-24 15:57:51
67阅读
高斯分布又叫正态分布,是统计学中最重要的连续概率分布。研究表明,在物理科学和经济学中,大量数据的分布通常是服从高斯分布,所以当我们对数据潜在分布模式不清楚时,可以优先用高斯分布近似或精确描述。高斯分布分为一维高斯分布和多维高斯分布。一维高斯分布假设一维随机变量X服从高斯分布如下:它的概率密度函数见公式为:以上高斯分布曲线取决于两个因素:均值和标准差。分布的均值决定了图形中心的位置,标准差决定了图像
转载
2023-10-30 13:48:39
483阅读