看极化SAR影像时看到矩阵服从高斯分布,不明白是什么于是查了查。正态分布又叫高斯分布 X~(μ,σ2) , μ为期望(均值),σ2为方差 遥感影像常认为服从正态分布,横坐标是影像灰度级变化,纵坐标为各灰度级像元数占整幅影像像元数的百分比,也就是对应的概率密度。高斯分布可认为是Z=X+iY中,X,Y同时满足高斯分布,也就是复数满足高斯分布。该原理的数学基础参考下面文章高斯变量和高斯变量基础
1、numpy、pandas之间的关系:scipy——数值计算库:理解是一个集成库,包括基础库numpy、数据分析清洗库pandas、可视化库matplotlib等numpy——基础:他是一个基础库,用于简单的数学计算和纯数学存储pandas——数据分析:数据分析和清洗matplotlib——绘图:可视化绘图2、本节英文词汇:axis 数轴、ndim 空间维度、目录一、numpy库的基本知识:二、
一、多元高斯分布简介    假使我们有两个相关的特征,而且这两个特征的值域范围比较宽,这种情况下,一般的高斯分布模型可能不能很好地识别异常数据。其原因在于,一般的高斯分布模型尝试的是去同时抓住两个特征的偏差,因此创造出一个比较大的判定边界。  下图中是两个相关特征,洋红色的线(根据ε 的不同其范围可大可小)是一般的高斯分布模型获得的判定边界,很明显绿色的X 所代表的数据点很可能是异常值,但是其?(
还是对计算机的监测,我们发现CPU负载和占用内存之间,存在正相关关系。CPU负负载增加的时候占用内存也会增加:   假如我们有一个数据,x1的值是在 0.4 和 0.6 之间,x2的值是在 1.6 和 1.8 之间,就是下图中的绿点:  
一、多元高斯分布简介    假使我们有两个相关的特征,而且这两个特征的值域范围比较宽,这种情况下,一般的高斯分布模型可能不能很好地识别异常数据。其原因在于,一般的高斯分布模型尝试的是去同时抓住两个特征的偏差,因此创造出一个比较大的判定边界。  下图中是两个相关特征,洋红色的线(根据ε 的不同其范围可大可小)是一般的高斯分布模型获得的判定边界,很明显绿色的X 所代表的数据点很可能是异常值,但是其?(
# 项目方案:Python实现高斯分布 ## 摘要 高斯分布是一种重要的概率分布,它在信号处理、图像分析、机器学习等领域有着广泛的应用。本项目旨在使用Python实现高斯分布的生成与分析,提供相应的代码示例和文档支持。项目中将涵盖高斯分布的理论基础、实现步骤、代码示例及可视化分析方法。 ## 1. 理论基础 高斯分布是指在复数域上定义的高斯分布,其概率密度函数(PDF)可表示为:
原创 10月前
327阅读
网上对于matlab如何产生均值为0,方差为1的高斯分布一般都会给出这个答案:                          &nbs
原创 2022-06-09 13:49:09
344阅读
二 数学基础-概率-高斯分布2.1 思维导图简述数学基础-高斯分布思维导图2.2 内容2.2.1 高斯分布的最大似然估计A 已知数据条件:是的列向量,代表一组数据。是N*p维矩阵,表示N组数据。 高斯分布: 一维高斯分布(以一维高斯分布为例)多维高斯分布B 求最大似然估计MLEC 解D 收获最大似然估计MLE: maximum likelihood estimation,由高斯提出,R.A Fis
高斯分布(Gaussian distribution):又名正态分布(Normal distribution),也称“常态分布” 一维正态分布函数: 卡尔曼滤波(Kalman filtering):一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。 X(k)=A X(k-1)+B U(k)+W(k)极大似然估计方法(Maximum Likelihood Estima
参考文献:Pattern Recognition and Machine Learning Published by Springer | January 2006https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/简介在第二章中将专门研究各种概率分布以及其关键特性。在这
内容来自Andrew老师课程Machine Learning的第九章内容的Multivariate Guassian Distribution(Optional)部分。一、Multivariate Gaussian Distribution(多元高斯分布) 使用高斯分布图,看一个数据中心的例子: 因为上面的原因,会带来一些误差,因此我们引入了改良版的算法: 我们不再单独地将p(x1),
多变量高斯分布先总结一些基本结论。设有随机变量组成的向量\(X=[X_1,\cdots,X_n]^T\),均值为\(\mu\in\mathbb{R}^n\),协方差矩阵\(\Sigma\)为对称正定\(n\)阶矩阵。在此基础上,如果还满足概率密度函数\[p(x;\mu,\Sigma)=\frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}}\exp\
1   一维高斯分布1.1  一维高斯分布的定义1.2  一维高斯分布的曲线1.3  标准一维高斯分布 2   二维高斯分布2.1  二维高斯分布的定义 2.2  二维高斯分布的曲线3   二维高斯滤波器3.1  高斯滤波器简介高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器
                          高斯分布(Gaussian distribution)         正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussi
卷积和高斯卷积图片的类型二值化图灰度图彩色图为什么使用卷积?卷积的定义卷积的计算边缘填充边缘填充的作用边缘填充的方式几种特殊的卷积核带来的效果高斯振铃现象如何解决振铃现象--高斯内核(模板)高斯函数的定义高斯模板的性质噪声高斯噪声椒盐噪声高斯滤波&中值滤波总结 卷积图片的类型二值化图 (Binary)灰度图 (Gray Scale)彩色图(Color)二值化图二值化图每一个像素值不是1就
高斯分布又叫正态分布,是统计学中最重要的连续概率分布。研究表明,在物理科学和经济学中,大量数据的分布通常是服从高斯分布,所以当我们对数据潜在分布模式不清楚时,可以优先用高斯分布近似或精确描述。高斯分布分为一维高斯分布和多维高斯分布。一维高斯分布假设一维随机变量X服从高斯分布如下:它的概率密度函数见公式为:以上高斯分布曲线取决于两个因素:均值和标准差。分布的均值决定了图形中心的位置,标准差决定了图像
一、多元高斯分布:一元高斯分布的概率密度函数如下所示:而如果我们对随机变量X进行标准化,用对上式进行换元,可得:此时我们可以说随机变量服从一元标准高斯分布,其均值,方差,概率密度函数为:1.1 多元标准高斯分布多元标准高斯分布的概率密度函数是由(2)导出的 且:我们称随机向量,即随机向量服从均值为零向量,协方差矩阵为单位矩阵的高斯分布1.2 多元高斯分布对于普通的随机向量,和其每个随机变量且彼此不
高斯分布 Gaussian公式图示性质标准化期望二阶距方差高斯分布的似然函数概念图示性质参数估计过程 高斯分布( Gaussian)公式高斯分布被定义为: N(x|μ,σ)=1(2πσ2)1/2exp{−12σ2(x−μ)2}均值(mean) μ 方差(variance) σ2 标准差(standard deviation):方差的平方根,记做 σ 精度(precision):方差的倒数,写作
转载 2023-08-28 13:40:58
284阅读
 2.3高斯分布高斯分布又称正态分布,被广泛用于连续变量分布的模型。对于单变量x,高斯分布的形式这里表示期望,表示方差。对于一个D维向量X,其多元高斯分布形式为:这里是一个D维均值向量,是的协方差矩阵,表示的行列式。     高斯分布出现在很多应用中并可以从很多角度来阐释。比如,我们已经见过的实单变量使熵最大的分布就是高斯分布。该性质同样适用于多元高斯分布中。
文章目录4.3.1 连续型随机变量正态(高斯分布图形特征性质Independent Gaussian Gaussian Z = X_1^2 + X_2^2 +...+ X_n^2 Z=X12+X22+...+Xn2正态(高斯分布与正态分布相关的函数1. Q函数2. 误差函数(Error Function)3. 互补误差函数(Complementary Error Function
  • 1
  • 2
  • 3
  • 4
  • 5