# 最优 IV 分箱及其 Python 实现 在数据科学与机器学习中,特征工程是模型表现的关键。IV(信息值)分箱是一种用于特征选择和数据预处理的技术,它可以帮助我们识别对目标变量最有影响的特征。在本文中,我们将探讨如何使用 Python 实现最优 IV 分箱的技术。 ## 什么是 IV? 信息值(IV)是一个统计量,用于衡量自变量对因变量的预测能力。具体而言,IV 的计算基于每个分箱的好坏
原创 2024-10-14 04:56:49
350阅读
# 如何实现“python 分箱后查看IV值” ## 简介 在数据分析和建模中,IV(Information Value)是一种用来衡量变量预测能力的指标,常用于评估特征的重要性。在python中,我们可以通过对数据进行分箱,然后计算IV值来实现对特征的评估。 ## 整体流程 下面是实现“python 分箱后查看IV值”的整体流程: | 步骤 | 操作 | | ------ | ------
原创 2024-03-08 07:08:35
187阅读
1点赞
目录一.引言二.排列 A-Permute◆ 定义◆ 计算◆ 性质◆ 实现三.组合 C-Combine◆ 定义◆ 计算◆ 性质◆ 实现四.经典算法题目1.全排列 [无重复]2.全排列 [有重复]3.组合 [可重复]4.子集 [无重复]5.子集 [有重复]五.总结一.引言关于排列前面已经介绍了一部分算法,例如求数组的全排列,求子集等等,我们可以使用回朔的方法进行计算,今天主要讲下数学上排列与组合的计算
连续特征离散化有些特征虽然也是数值型的,但是该特征的取值相加相减是没有实际意义的,那么该数值型特征也要看成离散特征,采用离散化的技术。连续特征离散化主要分为有监督方法与无监督方法。无监督方法:无监督方法都具有的问题就是都需要人为规定划分区间这个参数,常用的方法有分箱法和直观划分。分箱法又分为等宽分箱法和等频分箱法,其实从名字就能看出算法的做法了,前者指定定长的间隔将特征放入不同箱子内,后者根据频率
写在前面在本系列的第一篇概述中,笔者留了很多个坑没有填。今天这篇我们一起讨论两个话题:为什么要做变量分箱怎么分箱本篇文章多讲思路,少讲数学,不讲代码,但会附上网上的一些代码供参考。想学好机器学习一定要提高自己的信息获取、整合能力,并且多实践。一味做伸手党是没有前途的。为什么分箱我们随便打开一篇网上关于分箱的文章,可以看到这样的描述: 离散特征的增加和减少都很容易,易于模型的快速
卡方检验笔记18:SPSS交叉表卡方与非参数卡方检验有何区别?卡方检验,最透彻直接的概念是验证观测频数与理论频数的吻合程度。SPSS统计软件有两个菜单可以完成“卡方检验”,第一处是交叉表卡方,第二处是非参数卡方,大家注意啊,他们是有区别的,各自执行不同的任务。具体来说,卡方检验常用的功能有两种,第一种是独立性检验,在SPSS中由【描述统计-交叉表】菜单中的【卡方】参数选项实现,用于考察列联表中行变
不会直接把200个特征直接放到模型中去进行训练,而是会用一些方法,从这200个特征中挑选一些出来,放进模型,形成训练集数据。 1、分箱 所谓分箱,就是通过某些分类标准,将数据集进行某维度若干数据的合并,比如身高范围可以是150~180,若分组是厘米,则有30组。若才用距离为5的分箱,150 ~ 15 ...
转载 2021-09-06 15:21:00
280阅读
2评论
个人观点,信贷行业中,模型稳定性往往比模型效果更重要。信贷行业所做的任何规则、政策、模型的调整,都需要较长时间才能知道结果如何,模型迭代周期相较于其他行业可能更长,因此一个模型的稳定性至关重要。当然在模型迭代周期较短的场景下,可以去追求更好的模型效果,比如有些反欺诈场景,模型模型迭代快,模型可以快速及时调整。但对于大多数其他情况,无论是做评分卡还是机器学习,个人在实践中会为了稳定性牺牲掉一些效果。
卡方分箱卡方分箱原理数据分析与数据挖掘之四大分布三大检验python自带分箱函数  --  无法实现对分类型数据的分箱,可借助卡方分箱算法实现import numpy as np import pandas as pd data = np.random.randint(100, size=(10000,)) #自定义分箱 #cut(x, bins, right=True,
转载 2023-06-12 20:46:17
423阅读
最近上传了一个变量分箱的方法到pypi,这个包主要有以下说明:缺失值单独一箱,不论缺失的数量多少;生成的分箱woe值是单调的,后续有时间会迭代U型分箱的版本;会有分箱最小样本数占比,类似决策树的最小叶节点占比;分箱成功的变量才会保留,有可能失败的情况是找不出同时满足上述2和3的分箱;增加了多进程,提升分箱速度除了Iv以外,增加变量切分的其他算法:alg_method = ‘iv’ , ‘gini’
背景介绍本文针对有一定基础的数据分析人员,专门想了解卡方分箱原理和寻找能直接运行的代码的人员。分箱是特征工程中常见的操作,也就是将某一个变量划分为多个区间,比如对年龄分箱,1-10岁,10-40岁,40+岁。卡方分箱就是用来寻找最优分割点的方法。本文介绍了卡方分箱原理、python代码、使用数据集(有数据集构造代码)测试分箱效果几个部分。 注:这里保证代码肯定可以直接运行,并附上了检验分箱原理的代
# 使用卡方分箱进行数据分箱Python实现 在数据分析和机器学习中,特征工程是至关重要的一步。卡方分箱(Chi-square Binning)是一种用于将数值型特征离散化的方法,可以帮助我们更好地理解数据并提高模型的预测能力。在这篇文章中,我将向你介绍如何利用Python进行卡方分箱的实现。我们将从整件事情的流程开始,逐步深入理解每一个步骤,并附上必要的代码和注释。 ## 流程概述 以下
原创 11月前
162阅读
   在机械学习中,我们经常会对数据进行分箱处理的操作, 也就是 把一段连续的值切分成若干段,每一段的值看成一个分类。这个把连续值转换成离散值的过程,我们叫做分箱处理。 比如,把年龄按15岁划分成一组,0-15岁叫做少年,16-30岁叫做青年,31-45岁叫做壮年。在这个过程中,我们把连续的年龄分成了三个类别,"少年","青年"和"壮年"就是各个类别的名称,或者叫做标签。 cu
转载 2023-10-18 17:40:35
149阅读
分箱操作就是将连续数据转换为分类对应物的过程。⽐如将连续的身⾼数据划分为:矮中⾼。分箱操作分为等距分箱和等频分箱分箱操作也叫⾯元划分或者离散化。import numpy as np import pandas as pd df = pd.DataFrame(data = np.random.randint(0,150,size = (100,3)), columns=['Python','T
## Python分箱 ### 什么是分箱 在数据分析和机器学习中,分箱(binning)是一种将连续变量划分为离散区间的方法。分箱的目的是为了简化模型,降低模型对噪音的敏感度,并且能够提高模型在非线性关系上的拟合能力。 分箱是数据预处理中的一种重要步骤,它可以解决以下问题: 1. 处理离群值(outliers):将离群值归入特定区间,避免其对模型的影响。 2. 处理缺失值(missing
原创 2023-08-10 19:02:02
647阅读
解决的问题:1、实现了二分类的卡方分箱;2、实现了最大分组限定停止条件,和最小阈值限定停止条件;问题,还不太清楚,后续补充。1、自由度k,如何来确定,卡方阈值的自由度为 分箱数-1,显著性水平可以取10%,5%或1%算法扩展:1、卡方分箱除了用阈值来做约束条件,还可以进一步的加入分箱数约束,以及最小箱占比,坏人率约束等。2、需要实现更多分类的卡方分箱算法;具体代码如下:# -*- coding:
什么是分箱?简单点说就是将不同的东西,按照特定的条件放到一个指定容器里,比如水果 把绿色的放一个篮子里,红色一个篮子等等,这个篮子就是箱,而水果就是数据 颜色就是条件什么样式的数据要进行分箱数据主要分为连续变量和分类变量,分箱的操作主要针对于连续变量。为什么要对数据进行分箱操作稳定性,时间复杂度,看的舒服,提高准确度 等等分箱分为 有监督和无监督先说有监督,意思就是 个人确定范围区间 
转载 2023-09-19 11:01:51
64阅读
使用Pandas对数值进行分箱操作的4种方法方法1:between & loc方法2:cut方法3:qcut方法4:value_counts补充材料 分箱是一种常见的数据预处理技术,有时也被称为 分桶或 离散化,可用于将连续数据的间隔分组到“箱”或“桶”中。在本文中将介绍如何使用 Python的Pandas库中的4种方法对数值进行分箱。 首先,创建示例数据框import pandas
解决的问题: 1、实现了二分类的卡方分箱; 2、实现了最大分组限定停止条件,和最小阈值限定停止条件;问题,还不太清楚,后续补充。 1、自由度k,如何来确定,卡方阈值的自由度为 分箱数-1,显著性水平可以取10%,5%或1%算法扩展: 1、卡方分箱除了用阈值来做约束条件,还可以进一步的加入分箱数约束,以及最小箱占比,坏人率约束等。 2、需要实现更多分类的卡方分箱算法; 具体代码如下:# -
什么叫分箱?连续变量的离散化处理。例如年龄:从1、2、3、4……100变成“1~20”、“21~30”差不多这个样子。问题场景(为什么要分箱):不论是做业务分析还是建模前的特征工程,经常会遇到一个问题,连续变量需要分箱。且分箱会有一个诉求:分出来的组,对于目标指标(比如转化率)差异最大。业务分析中这样做的目的在于:一些连续变量对于最终结果指标的影响程度有更好的可解释性。比如客户的年龄与转化率相关性
  • 1
  • 2
  • 3
  • 4
  • 5