文章目录1 前言1.1 朴素贝叶斯的介绍1.2 朴素贝叶斯的应用2 iris数据集演示2.1 导入函数2.2 导入数据2.3 训练模型2.4 预测模型3 模拟离散数据演示3.1 导入函数3.2 模拟/导入数据3.3 训练模型3.4 预测模型4 原理补充说明4.1 贝叶斯算法4.2 朴素贝叶斯算法5 讨论 1 前言1.1 朴素贝叶斯的介绍朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的分
转载
2023-08-15 09:29:58
75阅读
挖掘建模②—Python实现分类与预测Python实现分类与预测Logistic回归模型建模体重与体重指数的简单线性关系多项式拟合/回归读取数据相关性分析不同的因素对标签值的影响确定多项式回归的阶数构建多阶多项式回归模型 Python实现分类与预测Logistic回归模型建模体重与体重指数的简单线性关系import pandas as pd # 导入数据分析库Pandas
import mat
转载
2023-10-25 15:39:19
243阅读
1.logistic回归定义logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b)
原创
2021-05-24 20:41:22
1817阅读
导语:数据挖掘,又译为数据采矿,是指从大量的数据中通过算法搜索隐藏于其中信息的过程。本篇内容主要向大家讲述如何使用KNN算法进行数据分类和数据预测。1、数据分类基础概念数据分类就是相同内容、相同性质的信息以及要求统一管理的信息集合在一起,把不同的和需要分别管理的信息区分开来,然后确定各个集合之间的关系,形成一个有条理的分类系统。举个最简单的例子:我们定义K线为三类:“上涨”:涨幅超过1%,“下跌”
转载
2023-11-16 20:58:10
9阅读
文章目录1 前言1.1 K近邻的介绍1.2 K近邻的应用2 二维数据集演示2.1 导入函数2.2 导入数据2.3 训练模型及可视化3 莺尾花数据集全数据演示3.1 导入函数3.2 导入数据3.3 训练模型及预测4 模拟数据集演示4.1 导入函数4.2 模拟数据集4.3 建模比较5 马绞痛数据+pipeline演示5.1 下载数据集5.2 导入函数5.3 填充空值5.4 建模计算6 讨论 1 前言
转载
2023-11-06 16:58:16
11阅读
文章目录torch.nn.init均匀分布正态分布常数分布全1分布全0分布对角分布dirac 分布xavier_uniform 分布xavier_normal 分布kaiming_uniform 分布kaiming_normal 分布正交矩阵稀疏矩阵参考 torch.nn.init均匀分布格式torch.nn.init.uniform_(tensor, a=0.0, b=1.0)作用从均匀分布中
目录5.1.1 实现步骤5.1.2 常用分类预测算法:5.1.3 回归分析1. logistic回归分析介绍:2. 决策树:3. 人工神经网络ANN4. 分类预测算法评价 测试集效果评价指标::总结:5.挖掘建模5.1 分类与预测5.1.1 实现步骤分类:输入样本的属性值,输出对应的类别,将每个样本映射到预先定义好的类别预测:建立两种或以上的变量间互相依赖的函数模型,然后进行预测或者控
转载
2023-12-21 05:38:36
63阅读
分类预测 | MATLAB实现CNN-GRU-Attention多输入分类预测 目录分类预测 | MATLAB实现CNN-GRU-Attention多输入分类预测分类效果模型描述程序设计参考资料 分类效果模型描述Matlab实现CNN-GRU-Attention多变量分类预测 1.data为数据集,格式为excel,12个输入特征,输出四个类别; 2.MainCNN-GRU-AttentionNC
转载
2023-08-21 18:59:54
91阅读
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow。 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型。前言,对两分类和多分类的概念描述 (前言是整理别人博客的笔记)1,在LR(逻辑回归)中,如何进行多分类? 一般情况下,我们
转载
2024-08-27 00:31:36
25阅读
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow。 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型。前言,对两分类和多分类的概念描述1,在LR(逻辑回归)中,如何进行多分类? 一般情况下,我们所认识的lr模型是一个二分类的模
转载
2023-09-25 17:37:41
161阅读
根据《统计学习方法》第四章朴素贝叶斯算法流程写成,引入贝叶斯估计(平滑处理)。本例旨在疏通算法流程,理解算法思想,故简化复杂度,只考虑离散型数据集。如果要处理连续型数据,可以考虑将利用“桶”把连续型数据转换成离散型,或者假设连续型数据服从某分布,计算其概率密度来代替贝叶斯估计。《机器学习实战》的朴素贝叶斯算法,是针对文本处理(垃圾邮件过滤)的算法,是二元分类(y=0或y=1),且特征的取值也是二元
转载
2024-07-08 10:17:21
68阅读
[-]一前提准备二数据处理 我们还需要给我每列数据命名否则后面建模会出现报错三建立模型 电影评分系统是一种常见的推荐系统。现在使用R语言基于协同过滤算法来构建一个电影评分预测模型。一,前提准备 1.R语言包:ggplot2包(绘图),recommenderlab包,reshape包(数据处理) &n
转载
2023-06-25 12:50:06
163阅读
多分类预测分析深度学习模型
在当今数据驱动的商业环境中,多分类问题广泛存在于各个领域,如图像识别、语音识别、文本分类等。通过构建深度学习模型来解决多分类的问题,不仅提高了预测的准确性,同时也能显著提高决策效率。对于许多企业来说,准确的多分类预测能直接影响到业务成果和市场竞争力。
> “我们需要一个模型来帮助我们更准确地分类客户,当前的系统实在太慢了!” - 用户反馈
时间轴上,三个月前我们发
大家好,我是小z数据分析中,主成分分析(PCA)是被大家熟知的数据降维方法。而因子分析和主成分分析是非常相似的两种方法,他们都属于多元统计分析里的降维方法。但因子分析最大的优点就是:对新的因子能够进行命名和解释,使因子具有可解释性。因此,因子分析可以作为「需要满足可解释性数据建模」的前期数据降维的方法。下文会介绍因子分析的原理逻辑、用途以及Python代码的实现过程。01什么是因子分析?因子分析的
转载
2023-10-16 19:47:04
84阅读
统计中文词语出现的次数以政府一号文件为例,统计出现的中文词语数量按照一定标准输出,如出现次数等需要解决中文分词问题,如:这是一门好课 ->这是 一门 好课 输入:2018年一号文件.txt输出:出现次数超过50次的词语,不包括换行。 #WordCount.py
import jieba #引入外部库
f = open("2018年一号
转载
2023-06-25 11:13:58
134阅读
随机森林是一种很常用的机器学习算法,“随机”表示每棵树的训练样本随机以及训练时的特征随机。 训练形成的多棵决策树形成了“森林”,计算时我们把每棵树的投票或取均值的方式得到最终结果,体现了集成学习的思想。不多说,下面根据代码一点一点分析,我
转载
2024-07-09 15:29:57
38阅读
介绍Boosting是一类将弱学习器提升为强学习器的算法。这类算法的工作机制类似:先从初始训练集中训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注。 然后基于调整后的样本分布来训练下一个基学习器;如此重复进行,直至基学习器的数目达到事先指定的值T,最终将这T个基学习器进行加权结合。Boosting算法是在算法开始时,为每一个样本赋上一
转载
2023-08-24 11:10:33
77阅读
一、分类的基本概念分类的概念:分类就是根据以往的数据和结果对另一部分数据进行结果的预测。分类预测的基本过程:历史数据称为训练数据,要预测的数据称为测试数据,结果称为类标签。分类预测主要有学习和分类两个阶段。利用数据进行模型参数的调节过程称为训练或学习,训练的结果是产生一个分类器或者分类模型,进而可以根据这个模型对预测数据进行预测,得到相应的类标签结果。类标签的数据种类可以分为二分类和多分类。 训练
# 使用GBDT进行多分类预测的Python实现
在进行多分类预测时,GBDT(Gradient Boosting Decision Trees)是一种有效的机器学习算法。下面,我将逐步介绍如何使用GBDT在Python中实现多分类预测的流程。
## 流程展示
在进行GBDT多分类预测的过程中,我们通常遵循以下步骤:
| 步骤 | 具体内容
原创
2024-10-22 06:20:07
47阅读
经过数据探索与数据预处理,得到了可以直接建模的数据。根据挖掘目标和数据形式可以建立模型,包括:分类与预测、聚类分析、关联规则、时序模式和偏差检测等。 分类与预测分类和预测是预测问题的两种主要类型,分类主要是预测分类标号(离散属性),而预测主要是建立连续值函数模型,预测给定自变量对应的因变量的值。分类 分类是构造一个分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到预先定义好的
转载
2023-10-11 15:09:03
71阅读