文章目录torch.nn.init均匀分布正态分布常数分布全1分布全0分布对角分布dirac 分布xavier_uniform 分布xavier_normal 分布kaiming_uniform 分布kaiming_normal 分布正交矩阵稀疏矩阵参考 torch.nn.init均匀分布格式torch.nn.init.uniform_(tensor, a=0.0, b=1.0)作用从均匀分布中
提出了一个新颖的将GCN嵌入LSTM的端到端模型,用于动态网络链路预测。其中,LSTM作为主要框架用来学习动态网络时间快照的时间特征;GCN用来捕获节点的局部拓扑特征。动态网络链路预测可以根据历史信息预测给定网络未来的连接状态。例如,可以根据人们过去的行为、朋友甚至个人属性预测人们在社交网络的未来关系。在过去,通常将GCN层和LSTM层进行顺序的简单堆叠,而本文中,将GCN嵌入到LSTM,更好地将
转载
2024-04-03 11:54:44
122阅读
本文是记录一些在深度学习中的预处理的一些语法和函数torchvision.transforms的图像变换2D、3D中心裁剪:import random
def random_crop_2d(img, label, crop_size):
random_x_max = img.shape[0] - crop_size[0]
random_y_max = img.shape[1] -
目录【1】在进行神经网络训练的时候,对数据的处理包括:【2】dataset: 【3】dataset tensordataset:【4】使用dataset过程的出错:【1】在进行神经网络训练的时候,对数据的处理包括:使用dataset 构建数据dataloader进行batch的划分Pytorch导入数据主要依靠 torch.utils.data.DataLoader和 
转载
2024-01-13 21:30:14
48阅读
文章目录1 前言1.1 朴素贝叶斯的介绍1.2 朴素贝叶斯的应用2 iris数据集演示2.1 导入函数2.2 导入数据2.3 训练模型2.4 预测模型3 模拟离散数据演示3.1 导入函数3.2 模拟/导入数据3.3 训练模型3.4 预测模型4 原理补充说明4.1 贝叶斯算法4.2 朴素贝叶斯算法5 讨论 1 前言1.1 朴素贝叶斯的介绍朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的分
转载
2023-08-15 09:29:58
75阅读
挖掘建模②—Python实现分类与预测Python实现分类与预测Logistic回归模型建模体重与体重指数的简单线性关系多项式拟合/回归读取数据相关性分析不同的因素对标签值的影响确定多项式回归的阶数构建多阶多项式回归模型 Python实现分类与预测Logistic回归模型建模体重与体重指数的简单线性关系import pandas as pd # 导入数据分析库Pandas
import mat
转载
2023-10-25 15:39:19
243阅读
最近在做一个RNN的实验,之前其实学习过RNN的一些知识,但由于长时间不用,加上很多API的更新,有些东西也记得不太清了,真的很想吐槽TF这种静态图,看个shape都费劲,现在也不想升级到2.0或者使用PyTorch,只能将就着用吧。 这个正弦预测应该算是入门基本实验了,网上很多资料都是一些小修小改,但是却很多都是错的,而错的人却还一直转载,我也是服了。建议还是去看看官方书籍或者自己调试一下吧,下
转载
2024-05-10 18:57:10
64阅读
导语:数据挖掘,又译为数据采矿,是指从大量的数据中通过算法搜索隐藏于其中信息的过程。本篇内容主要向大家讲述如何使用KNN算法进行数据分类和数据预测。1、数据分类基础概念数据分类就是相同内容、相同性质的信息以及要求统一管理的信息集合在一起,把不同的和需要分别管理的信息区分开来,然后确定各个集合之间的关系,形成一个有条理的分类系统。举个最简单的例子:我们定义K线为三类:“上涨”:涨幅超过1%,“下跌”
转载
2023-11-16 20:58:10
9阅读
1. 简介CTR预估模型主要用于搜索,推荐,计算广告等领域,传统CTR模型包括逻辑回归LR模型,因子分解机FM模型,梯度提升树GBDT模型等。 优点是可解释性强,训练和部署方便,便于在线学习。在搜索广告的场景中,query 和document使用不同的单词,同一个单词不同形态来表达同一个概念,需要通过文本的单词匹配来计算query和document的相似性。2. DSSM 模型思想: 将query
一、帧间预测基本原理 主要原理是为当前图像的每个像素块在之前已编码图像中寻找一个最佳匹配块,该过程称为运动估计( Motion Estimation,ME)。其中用于预测的图像称为参考图(Reference Frame),参考块到当前像素块的位移称为运动向量(Motion Vector, MV),当前像素块与参考块的差值称为预测残差( Prediction Residual
文章目录1 前言1.1 K近邻的介绍1.2 K近邻的应用2 二维数据集演示2.1 导入函数2.2 导入数据2.3 训练模型及可视化3 莺尾花数据集全数据演示3.1 导入函数3.2 导入数据3.3 训练模型及预测4 模拟数据集演示4.1 导入函数4.2 模拟数据集4.3 建模比较5 马绞痛数据+pipeline演示5.1 下载数据集5.2 导入函数5.3 填充空值5.4 建模计算6 讨论 1 前言
转载
2023-11-06 16:58:16
11阅读
目录前言课题背景和意义实现技术思路一、LeNet-5 卷积神经网络模型二、设计思路三、实验及结果分析四、总结实现效果图样例最后前言 ?大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精
转载
2024-09-13 10:07:16
54阅读
深度学习-图像分类算法小卷积核应用-VGGNet最优局部稀疏结构-Inception恒等映射残差单元-ResNet多层密集连接-DenseNet特征通道重标定-SENet通道压缩与扩展-SqueezeNet深度可分离卷积-MobileNet 小卷积核应用-VGGNet利用小卷积核代替大卷积核,感受野不变减少网络的卷积参数量网络结构 VGGNet的网络结构如下图所示。VGGNet包含很多级别的网络
分类预测 | MATLAB实现CNN-GRU-Attention多输入分类预测 目录分类预测 | MATLAB实现CNN-GRU-Attention多输入分类预测分类效果模型描述程序设计参考资料 分类效果模型描述Matlab实现CNN-GRU-Attention多变量分类预测 1.data为数据集,格式为excel,12个输入特征,输出四个类别; 2.MainCNN-GRU-AttentionNC
转载
2023-08-21 18:59:54
91阅读
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow。 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型。前言,对两分类和多分类的概念描述1,在LR(逻辑回归)中,如何进行多分类? 一般情况下,我们所认识的lr模型是一个二分类的模
转载
2023-09-25 17:37:41
161阅读
Keras是一个用于深度学习的Python库,它包含高效的数值库Theano和TensorFlow。 本文的目的是学习如何从csv中加载数据并使其可供Keras使用,如何用神经网络建立多类分类的数据进行建模,如何使用scikit-learn评估Keras神经网络模型。前言,对两分类和多分类的概念描述 (前言是整理别人博客的笔记)1,在LR(逻辑回归)中,如何进行多分类? 一般情况下,我们
转载
2024-08-27 00:31:36
25阅读
文章目录基本例子讲解两种align_corners设置下的函数行为查询矩阵有重复元素 在4D情况下,input (Tensor) – input of shape ,相当于输入的是图片,N为batch_size,C为channel。grid (Tensor) – flow-field of shape ,最后1维一定是长度为2的数组,代表二维平面上的坐标点(x,y)。和相当于查询矩阵
转载
2024-03-19 13:50:45
166阅读
根据《统计学习方法》第四章朴素贝叶斯算法流程写成,引入贝叶斯估计(平滑处理)。本例旨在疏通算法流程,理解算法思想,故简化复杂度,只考虑离散型数据集。如果要处理连续型数据,可以考虑将利用“桶”把连续型数据转换成离散型,或者假设连续型数据服从某分布,计算其概率密度来代替贝叶斯估计。《机器学习实战》的朴素贝叶斯算法,是针对文本处理(垃圾邮件过滤)的算法,是二元分类(y=0或y=1),且特征的取值也是二元
转载
2024-07-08 10:17:21
68阅读
深度学习入门-4(机器翻译,注意力机制和Seq2seq模型,Transformer)一、机器翻译1、机器翻译概念2、数据的处理3、机器翻译组成模块(1)Encoder-Decoder框架(编码器-解码器)(2)Sequence to Sequence模型(3)集束搜索(Beam Search)(ⅰ)简单贪心搜索(greedy search)(ⅱ)维特比算法(ⅲ)维特比算法二、注意力机制框架和Se
介绍Boosting是一类将弱学习器提升为强学习器的算法。这类算法的工作机制类似:先从初始训练集中训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做错的训练样本在后续受到更多关注。 然后基于调整后的样本分布来训练下一个基学习器;如此重复进行,直至基学习器的数目达到事先指定的值T,最终将这T个基学习器进行加权结合。Boosting算法是在算法开始时,为每一个样本赋上一
转载
2023-08-24 11:10:33
77阅读