## Python Opencv 边缘平滑
在图像处理领域,边缘锯齿是一种常见的问题,它会给图像带来不美观的效果。针对这一问题,我们可以使用 Opencv 库中的一些函数来实现边缘平滑,从而改善图像的质量。
### 边缘平滑的原理
边缘平滑的原理是通过对图像进行滤波操作,去除锯齿状的边缘,使图像边缘更加平滑。常见的边缘平滑方法包括高斯滤波、中值滤波等。
### 使用 Opencv 实现边缘
原创
2024-04-02 06:51:14
485阅读
边缘检测目录边缘检测形态学-腐蚀、膨胀操作开运算与闭运算梯度运算礼帽与黑帽图像梯度-Sobel算子(右减左,下减上)图像梯度-Scharr算子图像梯度-laplacian算子Canny边缘检测形态学-腐蚀、膨胀操作形态学-腐蚀操作,去毛刺儿,腐蚀边界# 腐蚀核大小
kernel = np.ones((3,3),np.uint8)
# 腐蚀操作:
# img输入图片
# kernel腐蚀核
# it
转载
2024-05-09 15:27:03
144阅读
1.图像的矩 参考链接:。,图像的几何矩定义如下: 其中与的取值范围为,图像的阶中心矩定义如下: 其中与的取值范围为,与代表图像的质心。对于离散的数字图像,积分变换转换为求和变换后,几何矩和中心矩公式如下: 其中与的取值范围为,与分别代表图像的宽度和高度。归一化的中心矩定位为:,其中,其中是的维度,其中是的维度,阶段表示参数的指数关系 利用二阶和三阶规格中心矩可以导出下面7个
转载
2024-05-06 19:19:22
90阅读
一幅原始图像在获取和传输过程中会受到各种噪声的干扰,使图像质量下降,对分析图像不利。反映到画面上,主要有两种典型的噪声。一种是幅值基本相同,但出现的位置很随机的椒盐噪声。另一种则每一点都存在,但幅值随机分布的随机噪声。为了抑制噪声、改善图像质量,要对图像进行平滑处理。几种常见的噪声 图像常常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(Salt&am
转载
2024-01-04 20:17:42
93阅读
使用不同的低筒滤波器对图像进行模糊使用自定义的率弄起对图像进行卷积(2D卷积)2D卷积 与信号一样,我们也可以对2D图像实施低通滤波,高通滤波等。LPF帮助我们去除噪声,模糊图像。而HPF帮助我们找到图像边缘。 OpenCV提供的函数cv2.filter2D()可以让我们对一幅图像进行卷积操作。比如下面我们将对一幅图像使用平均滤波器,如一个5*5的平均滤波器核: 操作如下:将核放在图像的一个
转载
2023-08-13 15:43:42
592阅读
# Python OpenCV 锯齿平滑
在计算机视觉和图像处理中,平滑是一种常见的图像处理技术。在处理图像时,我们往往需要消除图像中的锯齿状边缘,使图像更加清晰和平滑。Python中的OpenCV库提供了丰富的图像处理功能,包括平滑处理。本文将介绍如何使用Python和OpenCV库对图像进行锯齿平滑处理。
## 锯齿平滑算法
锯齿平滑是一种图像处理技术,旨在减少图像中的锯齿状边缘,使图像
原创
2024-04-10 05:47:22
338阅读
目前用的比较多的还是opencv-python、numpy和PIL。本文就这三个库封装了一些常用的工具类(以opencv-python为主),功能包括:1.图像拼接
2.图像旋转
3.图像裁剪
4.图像批量命名
5.在图像中添加中文
6.在图像中绘制线条(绊线)
7.图像亮度和对比度调节
8.图像光照补偿
9.视频转图像
10.视频片段截取
11.视频连接
12.利用背景减法获取矩形框(用于视频中
转载
2024-02-27 10:13:41
350阅读
通常,平滑图像的目的是为了减少噪声和伪影。OpenCv提供5种不同的平滑操作。目录1. 简单模糊cv::blur()和方框型滤波器cv::boxFilter()2. 中值滤波器cv::medianBlur()3. 高斯滤波器cv::GaussianBlur() 4. 双边滤波器cv::bilateralFilter()1. 简单模糊cv::blur()和方框型滤波器cv::boxFilt
转载
2024-04-10 13:23:25
253阅读
1 图像分割所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详细的了解和学习。1、基于阈值的分割方法阈值法的基本思想是基于图像的灰度特征来计算一个或多个灰度阈值,并将图像中每个像素的灰度值与阈值相比较,最后将像素根据比较结果分到合适的类
首先:Canny边缘检测:cv2.Canny()任务1:原理步骤1.1 噪音去除 由于边缘检测很容易受到噪音影响,所以第一步是使用5x5的高斯滤波器去除噪音。步骤1.2 计算图像梯度 对平滑后的图像使用Sobel算子计算水平方向和竖直方向的一阶导数(图像梯度)(Gx和Gy)。根据得到的这两幅梯度图找到边界的梯度和方向。公式如下: 梯度的方向一般总是与边界垂直。梯度方向被归为四类:垂直,水平,和两条
在我们进行图像处理的时候,有可能需要对图像进行细化,提取出图像的骨架信息,进行更加有效的分析。 图像细化(Image Thinning),一般指二值图像的骨架化(Image Skeletonization) 的一种操作运算。 所谓的细化就是经过一层层的剥离,从原来的图中去掉一些点,但仍要保持原来的
转载
2024-05-21 16:08:39
212阅读
上一篇文章中讲到了多边形的绘制实现,但是有一个问题:锯齿感比较强。本文也顺着Games101在上一篇文章的基础上,实现其中的一种抗锯齿方法,实现方式大致是,将每个点再“细分”成多个点,计算细分点在多边形中所占的比例以决定该点的透明度。结果就是将边缘模糊(去除边缘的高频信号)。话不多少,代码如下// 画一条分割线
cv::line(_mainMatImg, cv::Point(500, 0), cv
梯度、边缘和角点Sobel使用扩展 Sobel 算子计算一阶、二阶、三阶或混合图像差分 void cvSobel( const CvArr* src, CvArr* dst, int xorder, int yorder, int aperture_size=3 ); 输入图像.
dst
输出图像.
xorder
x 方
转载
2024-05-13 21:55:19
153阅读
图像梯度处理与边缘检测图像梯度处理Sobel算子Sobel算子处理图像梯度代码Scharr算子Sccharr算子处理图像梯度代码laplacian算子Laplician算子处理图像梯度总代码三种算子的总结与区分Canny边缘检测总代码 图像梯度处理图像的梯度处理主要是在黑底白字的图像中进行处理,这个处理分为水平Gx(将dy设为0,dx设为1),竖直Gy(将dx设为0,dy设为1)两个部分,再将G
转载
2024-06-11 05:21:44
236阅读
问题描述:提取一幅图像中的最大矩形区域。注意:图像可能是倾斜的,要先进行旋转校正。代码实现主要分为两块:一是实现图像旋转校正;一是实现提取目标矩形区域。旋转校正代码实现Mat correctImg(Mat src)
{
Mat gray, gauss;
cvtColor(src, gray, COLOR_BGR2GRAY);
GaussianBlur(gray, gauss, Size(5,
转载
2024-03-11 14:07:28
83阅读
© Fu Xianjun. All Rights Reserved.平滑处理平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法。平滑处理的用途有很多, 但是在本教程中我们仅仅关注它减少噪声的功用 (其他用途在以后的教程中会接触到)。平滑处理时需要用到一个 滤波器 。 最常用的滤波器是 线性 滤波器,线性滤波处理的输出像素值 (i.e. g(i,j)) 是输入像素值 (i.e. f(i+k,
'''
@Author: your name
@Date: 2020-02-13 13:30:07
@LastEditTime : 2020-02-13 17:02:32
@LastEditors : Please set LastEditors
@Description: 高斯平滑展示,边缘检测展示,
能够通过按键时时控制高斯平滑,高斯选择改变后改变高斯图和边缘检测
转载
2024-04-11 10:38:52
30阅读
Sobel算子检测方法对灰度渐变和噪声较多的图像处理效果较好,sobel算子对边缘定位不是很准确,图像的边缘不止一个像素;当对精度要求不是很高时,是一种较为常用的边缘检测方法。 OpenCV中sobel过滤因子的原型为void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, in
转载
2024-02-09 23:21:50
266阅读
平滑处理(模糊处理):一种简单且使用频率很高的图像处理方法,常用于减少图像上的噪点或失真图像滤波:图像预处理中,尽量保留图像细节特征条件下,对噪声进行抑制平滑化和滤波操作:图像的能大部分集中在幅度谱的低频和中频段,在较高频段,有用信息经常被噪声淹没滤波操作目的:1.特征模式识别2.消除噪声平滑滤波:一类为模糊,另一类为消除噪音五种平滑滤波的滤波器函数:1.方框滤波BoxBlur 2.均值滤波Blu
转载
2024-02-23 21:48:17
96阅读
目录为什么要用边缘处理默认边缘处理自定义边缘处理API代码展示效果BORDER_DEFAULTBORDER_REPLICATEBORDER_WRAPBORDER_CONSTANT结语 为什么要用边缘处理如果kernel是3 x 3,那么图片周围一圈像素是扫不到的。如果kernel是(2k+1)x (2k+1),那么图片周围k圈像素扫不到。如下图 5 x 5的kernel能扫到的最大的面积就是以红
转载
2024-03-11 19:30:46
394阅读