亚像素面阵摄像机的成像面以像素为最小单位。例如某CMOS摄像芯片,其像素间距为5.2微米。摄像机拍摄时,将物理世界中连续的图像进行了离散化处理。到成像面上每一个像素点只代表其附近的颜色。至于“附近”到什么程度?就很困难解释。两个像素之间有5.2微米的距离,在宏观上可以看作是连在一起的。但是在微观上,它们之间还有无限的更小的东西存在。这个更小的东西我们称它为“亚像素”。实际上“亚像素”应该是存在的,
转载
2024-03-20 11:29:01
311阅读
cv::goodFeaturesToTrack(imGrayPre, prepoint, 1000, 0.01, 8, cv::Mat(), 3, true, 0.04);//第三个参数是提取的最大点数,0.01返回寻找角点的质量,8表示相邻角点间的最小距离,mask表示不会在mask为零的地方提取角点,最后一个参数一般不变通过上面得到的prepoint像素值是整数级别的,还不够精确;我们接下来求
转载
2024-04-13 21:55:31
195阅读
求帮忙下载:联系方式:QQ:5136902961.pkma75 资源积分:1分备注:pdf格式,用曲线拟合的方法计算亚像素,编程易实现,具有较强的实用价值感谢Gurus(咕噜)503502929提供!2.上 传 者:kuailechengzi 资源积分:1分备注:亚像素边缘检测方法,此种方法先经过传统模板算子确定边缘的大致位置,然后用曲线拟合方法求出边缘的精确位置,
转载
2024-08-23 16:21:40
84阅读
角点检测可能应用于工业检测中,可以作为特征点作为后续处理的条件,也可以做图像分割,比如工件外轮廓由直线、圆弧等连接而成,可以通过角点检测把直线和圆弧分割开等。OpenCV中通过两个函数实现图像的亚像素级角点检测。1、goodFeaturesToTrack()void goodFeaturesToTrack(InputArray image, OutputArray corners, int max
转载
2024-06-05 12:45:27
231阅读
上篇文章,已对点和边缘两种情形的亚像素定位算法做了详细描述。因图像特征不同,亚像素定位算法也会不同,我们可以根据图像的具体特征,进行数学建模以达到定位目的。这里另起一篇说明角点情形的亚像素定位问题。1. 角点几何特征角点位置特征:边缘的交点,且角点与边缘点的连线和边缘点的梯度方向垂直。如上图所示,假设一个起始角点q在实际亚像素角点附近。p点在q点附近的邻域中,若p点在均匀区域内部,则p点的梯度为0
转载
2024-04-18 09:56:35
759阅读
目录摘要一、引言二、Canny方法三、Devernay的亚像素校正四、Devernay算法的精度分析五、改进的亚像素方案六、边点链(Edge Point Chaining)七、算法八、计算复杂度九、优点和局限性十、总结摘要该文章描述了一种产生亚像素精度链状边缘点的图像边缘检测器。该方法结合了经典的Canny和Devernay算法的主要思想。分析表明,对原始公式稍加修改可以提高边缘点的亚像素精度。一
转载
2024-05-06 22:54:23
1831阅读
一、环境本文使用环境为:Windows10Python 3.9.17opencv-python 4.8.0.74二、canny原理OpenCV中的Canny边缘检测算法是一种基于图像处理的计算机视觉技术,主要用于检测图像中的边缘。Canny边缘检测算法的原理是通过计算图像中像素点之间的梯度值来寻找边缘。这种方法可以有效地消除噪声,同时保留图像中的主要特征。本文将对Canny边缘检测算法的原理进行详
平滑处理(模糊处理):一种简单且使用频率很高的图像处理方法,常用于减少图像上的噪点或失真图像滤波:图像预处理中,尽量保留图像细节特征条件下,对噪声进行抑制平滑化和滤波操作:图像的能大部分集中在幅度谱的低频和中频段,在较高频段,有用信息经常被噪声淹没滤波操作目的:1.特征模式识别2.消除噪声平滑滤波:一类为模糊,另一类为消除噪音五种平滑滤波的滤波器函数:1.方框滤波BoxBlur 2.均值滤波Blu
转载
2024-02-23 21:48:17
96阅读
1.1亚像素边缘定位技术简介 定位精度为整像素级的边缘检测算法,实际上,边缘的位置存在于像素的任何位置,理论上讲,整像素级边缘定位最大误差为 0.5 个像素,两个特征点间的像素个数就有可能存在着 1 个像素的误差。提高硬件分辨率,可以减少像素值,从而提高测量精度,但是这种硬件的提高将极大地增加系统的成本,而且在图像传输速度和图像的存储容量方面都
转载
2024-04-09 02:18:29
370阅读
亚像素图像大家有没有你想过,在软件层面,如何提高图像处理的精度?比如,我们要用图像处理测量工业零件的周长,怎么在不改变硬件条件的情况下尽可能得到更高的精度? 我们平时看到的图像都是由像素点组成的,不知道大家有没有思考过,相邻像素点之间像素值大小跳变太大的问题? 为了方便理解,这里举个稍微离谱一点的例子 将一张实际大小为 8cm x 8cm 的图片通过计算机转换为一张 4 x 4 个像素点的图像,那
转载
2024-04-07 14:04:15
792阅读
在Halcon中还有其他用于提取边缘线段的算子,提取出的线段类型也是亚像素精度的XLD轮廓。 ①【Filters滤波器/Lines色线】lines_gauss算子 lines_gauss算子的相应速度不算快,如
转载
2024-04-03 12:15:15
832阅读
前言: 图像特征点检测广泛运用于计算机视觉处理领域,包括目标识别与跟踪、立体成像,在特征点的图像分析中,特征点提取是非常重要的步骤,其中,角点是最常见的一类点特征。前面我们介绍了用 Harris提取角点,但是提取的角点是像素级的,精度不高,若我们进行图像处理的目的不是提取用于识别的特征点而是进行
转载
2024-04-07 13:34:49
502阅读
1 Sobel 导数1.1.1 原因上面两节我们已经学习了卷积操作。一个最重要的卷积运算就是导数的计算(或者近似计算).为什么对图像进行求导是重要的呢? 假设我们需要检测图像中的 边缘 ,如下图:你可以看到在 边缘 ,相素值显著的 改变 了。表示这一 改变 的一个方法是使用 导数 。 梯度值的大变预示着图像中内容的显著变化。用更加形象的图像来解释,假设我们有一张一维图形。下图中灰度值的
?1 概述参考文献:边缘是图像视觉中的一种重要信息,也是图像最基本的特征之一。图像的边缘检测是图像处理和计算机视觉领域中最重要的研究内容之一,是图像测量技术研究的热点。本文针对图像测量过程中对边缘检测提出的要求,在研究和分析现有的一些边缘检测技术的基础上,提出了一种SUSAN边缘检测算法。 1.1 SUSAN算子原理 SUSAN 是英国牛津大学学者S.M. Smith和J.M Brady
引言 前文介绍了 Canny 算子边缘检测,本篇继续介绍 Roberts 算子、 Prewitt 算子、 Sobel 算子和 Laplacian 算子等常用边缘检测技术。Roberts 算子 Roberts 算子,又称罗伯茨算子,是一种最简单的算子,是一种利用局部差分算子寻找边缘的算子。他采用对角线方向相邻两象素之差近似梯度幅值检测边缘。检测垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感,无法
图像的边缘检测的原理是检测出图像中所有灰度值变化较大的点,而且这些点连接起来就构成了若干线条,这些线条就可以称为图像的边缘。 Canny边缘检测算子是John F. Canny于 1986 年开发出来的一个多级边缘检测算法。Canny 边缘检测的数学原理和算法实现这里就不再了,有兴趣的读者可以查
转载
2024-02-28 20:59:39
546阅读
朋友发来两个小项目,要求亚像素精度。突然想问几个问题:1、何为亚像素?2、何为亚像素精度?3、使用亚像素测量,系统应注意什么?1、何谓亚像素?面阵摄像机的成像面以像素为最小单位。例如某CMOS摄像芯片,其像素间距为5.2微米。摄像机拍摄时,将物理世界中连续的图像进行了离散化处理。到成像面上每一个像素点只代表其附近的颜色。至于“附近”到什么程度?就很困难解释。两个像素之间有5.2微米的距离,在宏观上
动机在计算机视觉领域,经常需要检测极值位置,比如SIFT关键点检测、模板匹配获得最大响应位置、统计直方图峰值位置、边缘检测等等,有时只需要像素精度就可以,有时则需要亚像素精度。本文尝试总结几种常用的一维离散数据极值检测方法,几个算法主要来自论文《A Comparison of Algorithms for Subpixel Peak Detection》,加上自己的理解和推导。问题定义给定如下离
在做物体检测时,由于成本和应用场合的限制,不能够一味地增加相机的分辨率,或者已经用了分辨率很高的相机,但是视野范围很大,仍然无法实现很高的精度,这时就要考虑亚像素技术,亚像素技术就是在两个像素点之间进行进一步的细分,从而得到亚像素级别的边缘点的坐标(也就是float类型的坐标),一般来说,现有的技术可以做到2细分、4细分,甚至很牛的能做到更高,通过亚像素边缘检测技术的使
转载
2023-12-11 08:26:25
129阅读
设图像大小100*100。图像中1个单位代表实际1mm。原比例显示,此时显示在设备坐标上是100像素*100像素。若要在设备坐标上画一条直线,该直线代表了实际10mm,那么体现在设备坐标上就是10个像素。也就是要在屏幕上画一条10像素长的直线才能满足要求。若图像的显示放大10倍,图像的大小依然是100*100,图像中1个单位代表实际1mm,这一点不会受到放缩显示的影响。此时图像显示在设备坐标上是1