在本文中我将利用 opencv 3.0 自带级联分类器将图片集训练得出训练好的分类器,通过程序调用的方法调用训练好的分类器进而检测行人。首先应找到级联分类器的位置所在,其位置一般应在opencv安装的根目录中,选中我划出的两个程序复制到训练集文件夹中。两者的作用分别是:opencv_createsamples用于准备训练用的正样本数据和测试数据,能够生成能被opencv_traincascade程
转载
2024-03-29 07:30:28
66阅读
你以前听说过深度学习这个词吗? 或者你
原创
2021-07-16 16:57:04
355阅读
文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类器 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数
rgb = io.imread(f) # 读取图片
gray =
转载
2024-03-03 10:11:20
157阅读
文章目录1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM4. 示例代码官方示例(python)推理阶段(C++版本)5. 小结 1. 引言opencv中集成了基于libsvm1实现的SVM接口,便于直接进行视觉分类任务。对于数据处理和可视化需求来说,可以用python接口opencv
转载
2023-11-15 19:19:41
71阅读
文章目录前言一、项目结构在这里插入图片描述二、源码1.程序入口2.SVM_Classify类的设计3.Classfication_SVM类的设计总结 前言本文主要使用opencv实现图像分类器一、项目结构二、源码1.程序入口int main(void)
{
//int clusters=1000;
//Classfication_SVM c(clusters);
特征聚类
//c.Tra
转载
2024-03-25 17:39:24
155阅读
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类器3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
转载
2024-04-24 13:27:58
84阅读
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类器 流程: 收集样本,处理样本 训练分类器 目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
转载
2023-11-18 10:18:07
73阅读
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类器训练人脸检测的样本与相关文件1 、opencv里的分类器大概介绍: OpenCV中有两个程序可以训练级联分类器: opencv_haartraining and opencv_traincascade``。 ``opencv_tra
转载
2024-05-01 14:19:08
31阅读
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。训练样本分为正例样本和反例样本,其中正例样本是指
转载
2024-01-02 11:16:18
33阅读
一、简介 目标检测方法最初由PaulViola提出,并由Rainer Lienhart对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的harr 特征进行分类器训练,得到一个级联的boosted分类器。分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在
转载
2023-11-28 22:39:21
92阅读
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指
转载
2023-07-27 20:36:06
77阅读
目标在本教程中,我们将学习Haar级联对象检测的工作原理。我们将使用基于Haar Feature的Cascade分类器了解人脸检测和眼睛检测的基础知识。我们将使用cv::CascadeClassifier类来检测视频流中的对象。特别是,我们将使用以下函数: cv::CascadeClassifier::load来加载.xml分类器文件。它可以是Haar或LBP分类器 cv::CascadeClas
转载
2024-06-11 13:44:19
85阅读
检测任务 主要参考了几篇文献博客: https://docs.opencv.org/3.3.1/dc/d88/tutorial_traincascade.html 后来想了下,还是opencv自己的文档最好用,需要耐心读就好。 首先明确级联分类器cascadeClassifier的原理。核心是弱分类器与强分类器的等价性,当多个弱分类器级联起来之后,即使每个单独的分类器分类效果很差,比如
转载
2024-05-30 07:53:18
35阅读
OpenCV训练分类器
一、简介
目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。
 
转载
2023-11-14 10:39:28
60阅读
支持向量机:将不同类样本在样本空间进行分割,得出一个间隔最大超平面。调用OpenCV中SVM分类器流程如下:1)建立训练样本注意:CvSVM的train函数要求训练样本存储在float类型的Mat结构中,故需将训练数据存储为符合条件的Mat变量中。2)设置SVM分类器参数注意:此处主要涉及到SVM分类器相关参数设置。下面是自己对SVM分类器相关参数总结。 参数介绍 degree:内核函数
转载
2024-01-28 19:59:47
49阅读
1.概述级联分类器这个坑早该挖的了,由于本人之前使用的是win10系统家庭版的某种关系,并没有成功训练出xml,趁着换了Linux和比赛需要就再次挖挖坑,这里用到的是Opencv自带的两个分类器来训练样本,这里仅讲述linux环境下分类器的使用方法。Linux版本两个应用程序位于/usr/local/bin文件夹中,分别为opencv_createsamples和opencv_traincasca
转载
2024-01-31 00:32:01
48阅读
级联分类器包括两个:训练和检测; 这里主要是介绍检测部分; 如果需要利用cascade训练模型,可以参考:opencv级联分类器训练过程记载关于CascadeClassifier的简介:CascadeClassifier是opencv下objdetect模块中用来做目标检测的级联分类器的一个类;简而言之是滑动窗口机制+级联分类器的方式;早期opencv版本仅支持haar特征的目标检测,分别在ope
转载
2023-12-03 07:26:11
50阅读
SVM的理论知识见 SVM的一些总结与认识 --入门级 之前一直以为,用SVM做多分类,不就是用多个SVM分类么,请形状类似于一个二叉树,如下: 即,将所有样本当作输入,其中在训练第一个分类器SVM_1的时候,其正样本为属于类别1的样本,其负样本为剩余的其他所有样本,这就称为 一对其余法,这样做虽然训练的时间从道理上来讲是相对较快的,但是它会带来一系列的问题: 1. 有可能有一个样本在
先把我印象笔记里的东西贴出来,后期有时间再细细整理。分类器的工作原理: 一个分类器经过大量的正例和反例训练。训练后,可以应用到与训练过程中大小相同的感兴趣区域中使用。检测过程中,产生一个搜索框在图片移动,经过每个位置并用分类器检测。搜索框的尺寸会在每一遍检索完后改变。级联分类器现在有两种选择: 一是使用 opencv1 的CvHaarClassifierCascade函数,二是使用新版本的Ca
转载
2024-05-18 16:02:36
55阅读
SVM的原理SVM也叫支持向量机,最大间隔分类器。在分类、回归方面普遍出现。 我们在这里考虑使用二维空间来表示一系列数据,每个数据都有它自身的(x,y),然后用一条直线将其进行分类。这应该就是最简单的线性可分。 一般来说,当两个类别距离这条直线越远,那么分类的置信度就越高。函数间隔与几何间隔上述我们提到二维空间中的样本数据,但是一般来说,我们的数据是处于高维空间的。那么这里我们就是用公式 wTx+
转载
2024-03-25 17:35:42
47阅读