文章导航1.收集正样本2.处理正样本3.收集负样本4.生成描述文件5.训练分类 1.收集正样本这里需要注意的是,正样本图需要裁剪,使目标物体轮廓很清晰,且正样本图越多越好。2.处理正样本将正样本图片转为灰度图,方便后续处理。def convert_gray(f, **args): # 图片处理与格式化的函数 rgb = io.imread(f) # 读取图片 gray =
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类 流程:    收集样本,处理样本     训练分类     目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
文章目录前言一、项目结构在这里插入图片描述二、源码1.程序入口2.SVM_Classify类的设计3.Classfication_SVM类的设计总结 前言本文主要使用opencv实现图像分类一、项目结构二、源码1.程序入口int main(void) { //int clusters=1000; //Classfication_SVM c(clusters); 特征聚类 //c.Tra
文章目录1. 引言2. 基本原理3. 函数解析创建模型设置模型类型设置参数C设置核函数设置迭代算法的终止标准训练SVM模型预测结果误差计算保存SVM模型从文件中加载SVM4. 示例代码官方示例(python)推理阶段(C++版本)5. 小结 1. 引言opencv中集成了基于libsvm1实现的SVM接口,便于直接进行视觉分类任务。对于数据处理和可视化需求来说,可以用python接口opencv
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
暑假的时候做了一个智能机械臂,用到了opencv里的级联分类,这里写一下我的理解级联分类上手简单,同时Haar特征支持一些特殊图形的检测,例如人脸,我训练的是一个纯色模型,效果并不好,不建议用该种方法识别一些颜色梯度变化不明显的物体(1)haar特征   图片展示了最基本的几类haar特征,每种其实都有相应的变式,图中黑:白等于1:1, 这种也是一种haar特征。
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类训练人脸检测的样本与相关文件1 、opencv里的分类大概介绍:  OpenCV中有两个程序可以训练级联分类opencv_haartraining and opencv_traincascade``。 ``opencv_tra
opencv中支持SVM分类,过程就是:先训练再预测(python实现) # svm 对于数据的要求: 所有的数据都要有label # [155,48] -- 0 女生 [152,53] ---1 男生 # 监督学习 0 负样本 1 正样本 步骤一:获取训练样本#1.获取训练样本,2类 row = 30 data1 = np.ones((row,2))+np.random.rand(row,
支持向量机:将不同类样本在样本空间进行分割,得出一个间隔最大超平面。调用OpenCV中SVM分类流程如下:1)建立训练样本注意:CvSVM的train函数要求训练样本存储在float类型的Mat结构中,故需将训练数据存储为符合条件的Mat变量中。2)设置SVM分类参数注意:此处主要涉及到SVM分类相关参数设置。下面是自己对SVM分类相关参数总结。 参数介绍 degree:内核函数
1.概述级联分类这个坑早该挖的了,由于本人之前使用的是win10系统家庭版的某种关系,并没有成功训练出xml,趁着换了Linux和比赛需要就再次挖挖坑,这里用到的是Opencv自带的两个分类来训练样本,这里仅讲述linux环境下分类的使用方法。Linux版本两个应用程序位于/usr/local/bin文件夹中,分别为opencv_createsamples和opencv_traincasca
OpenCV训练分类 一、简介     目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。   &nbsp
目标在本教程中,我们将学习Haar级联对象检测的工作原理。我们将使用基于Haar Feature的Cascade分类了解人脸检测和眼睛检测的基础知识。我们将使用cv::CascadeClassifier类来检测视频流中的对象。特别是,我们将使用以下函数: cv::CascadeClassifier::load来加载.xml分类文件。它可以是Haar或LBP分类 cv::CascadeClas
         目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。训练样本分为正例样本和反例样本,其中正例样本是指
       目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善. 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本(例如人脸或汽车等),反例样本指
检测任务 主要参考了几篇文献博客: https://docs.opencv.org/3.3.1/dc/d88/tutorial_traincascade.html 后来想了下,还是opencv自己的文档最好用,需要耐心读就好。 首先明确级联分类cascadeClassifier的原理。核心是弱分类与强分类的等价性,当多个弱分类级联起来之后,即使每个单独的分类分类效果很差,比如
一、简介       目标检测方法最初由PaulViola提出,并由Rainer Lienhart对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的harr 特征进行分类训练,得到一个级联的boosted分类分类中的"级联"是指最终的分类是由几个简单分类级联组成。在图像检测中,被检窗口依次通过每一级分类, 这样在
支持向量机支持向量机是一种二分类模型,目标是寻找一个标准(称为超平面)对样本数据进行分割,分割的原则是确保分类最优化(类别之间的间隔最大),当数据集较小时,使用支持向量机进行分类非常有效。支持向量机是最好的现成分类之一,这里是指分类不加修改就可以使用的。在对原始数据分类的过程中,可能无法使用线性方法实现分割,支持向量机在分类时,把无法线性分割的数据映射到高维空间,然后再高维空间找到分类最优的线
SVM的原理SVM也叫支持向量机,最大间隔分类。在分类、回归方面普遍出现。 我们在这里考虑使用二维空间来表示一系列数据,每个数据都有它自身的(x,y),然后用一条直线将其进行分类。这应该就是最简单的线性可分。 一般来说,当两个类别距离这条直线越远,那么分类的置信度就越高。函数间隔与几何间隔上述我们提到二维空间中的样本数据,但是一般来说,我们的数据是处于高维空间的。那么这里我们就是用公式 wTx+
先把我印象笔记里的东西贴出来,后期有时间再细细整理。分类的工作原理: 一个分类经过大量的正例和反例训练。训练后,可以应用到与训练过程中大小相同的感兴趣区域中使用。检测过程中,产生一个搜索框在图片移动,经过每个位置并用分类检测。搜索框的尺寸会在每一遍检索完后改变。级联分类现在有两种选择: 一是使用 opencv1 的CvHaarClassifierCascade函数,二是使用新版本的Ca
级联分类包括两个:训练和检测; 这里主要是介绍检测部分; 如果需要利用cascade训练模型,可以参考:opencv级联分类训练过程记载关于CascadeClassifier的简介:CascadeClassifier是opencv下objdetect模块中用来做目标检测的级联分类的一个类;简而言之是滑动窗口机制+级联分类的方式;早期opencv版本仅支持haar特征的目标检测,分别在ope
  • 1
  • 2
  • 3
  • 4
  • 5