1.准备工作目录准备好如下工作目录OpenCV版本较高(大概4.以上)时可能没有opencv_createsamples和opencv_traincascade的exe文件需要下载cmake自己生成,过程较复杂。这里建议使用低版本,我用的是3.4.16。neg目录: 放负样本的目录pos目录: 放正样本的目录xml目录: 新建的一个目录,为之后存放分类文件使用neg.txt: 负样本路径列表po
1.概述级联分类这个坑早该挖的了,由于本人之前使用的是win10系统家庭版的某种关系,并没有成功训练出xml,趁着换了Linux和比赛需要就再次挖挖坑,这里用到的是Opencv自带的两个分类训练样本,这里仅讲述linux环境下分类的使用方法。Linux版本两个应用程序位于/usr/local/bin文件夹中,分别为opencv_createsamples和opencv_traincasca
# JavaOpenCV结合训练分类 在机器学习和计算机视觉领域,OpenCV是一个强大的库,它提供了大量的算法和工具来处理图像和视频。Java作为一门广泛使用的编程语言,与OpenCV结合使用,可以开发出功能丰富的应用程序。本文将介绍如何使用JavaOpenCV训练一个分类。 ## 环境搭建 首先,确保你的开发环境中安装了JavaOpenCV。你可以从OpenCV官网下载Jav
原创 2024-07-29 06:36:50
55阅读
使用级联分类工作包括两个阶段:训练和检测。 检测部分在OpenCVobjdetect 模块的文档中有介绍,在那个文档中给出了一些级联分类的基本介绍。当前的指南描述了如何训练分类:准备训练数据和运行训练程序。 重点注意事项OpenCV中有两个程序可以训练级联分类opencv_haartraining 和 opencv_traincascade 。 opencv_trainca
环境:opencv-4.0,python,c++ 方法:opencv_createsamples,opencv_traincascade,haar特征或者lbp特征+cascade分类 流程:    收集样本,处理样本     训练分类     目标检测一. 收集样本,处理样本 收集正样本关于正样本的收集
一 采集数据并制作正负样本数据集1.1 录制视频 1.2 将单个视频截取为指定分辨率的图像1.3 处理负样本视频1.4 本次训练正负样本数量选择与图片重编号二 利用matlab制作制作正样本标注框文件三 开始训练opencv级联分类3.1 生成正样本文件pos.txt3.1.1 对label.txt进行处理,3.1.2 生成暂时性的pos.txt即pos_tmp.txt3.1
http://docs.opencv.org/2.4/doc/user_guide/ug_traincascade.html?highlight=train Cascade Classifier TrainingIntroductionThe work with a cascade classifier inlcudes two major stages: training and de
转载 精选 2014-11-05 23:56:14
1816阅读
本节文章讲解OpenCV中Haar+Adaboost的训练过程。此文章假定读者已经了解前面5章的内容,包括Haar特征,弱分类和强分类结构,以及GAB等内容。缩进在opencv_traincascade.exe程序中,有如下参数缩进如上输入的boostParams中的6个参数决用于决定训练过程:1. 参数bt选择Boosting类型(默认GAB),本系列文章五中已经介绍了2. minHit
提供一个人脸检测的训练工程,其里面包括原始的训练样本、制作好的训练样本、训练指令等,感觉其样本分类特别麻烦其下载地址为:opencv使用cascade分类训练人脸检测的样本与相关文件1 、opencv里的分类大概介绍:  OpenCV中有两个程序可以训练级联分类opencv_haartraining and opencv_traincascade``。 ``opencv_tra
OpenCV训练分类 一、简介     目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类训练,得到一个级联的boosted分类。   &nbsp
转载 2023-11-14 10:39:28
60阅读
OpenCV 使用的 Object detection 技术称为 Cascade Classifier for Object Detection ,是一种属于 boosted cascade of weak classifiers 的方法,也就是将数个弱分类串联起来再得出最佳的分类结果。其实最早整合到 OpenCV 并支持的分类特征是哈尔特征(Haar-like features),后来加入了
检测任务 主要参考了几篇文献博客: https://docs.opencv.org/3.3.1/dc/d88/tutorial_traincascade.html 后来想了下,还是opencv自己的文档最好用,需要耐心读就好。 首先明确级联分类cascadeClassifier的原理。核心是弱分类与强分类的等价性,当多个弱分类级联起来之后,即使每个单独的分类分类效果很差,比如
首先说一下我的经历吧!不想看的可以直跳到教程。之前在树莓派上训练分类,发现树莓派内存过小,训练几张照片还ok,但是训练十几张照片进程直接就被系统扼杀掉,,所以这次选择用笔记本训练。经过测试,用400张50分辨率的正样本,1500张负样本训练训练级数为20,featureType 采用LBP特征时,需要4、5个小时才训练到16级,如果用Haar特征的话我训练的三天三夜才训练到16级,越是到后面
opencv2-支持向量机之SVM引导 分类分类是一种计算机程序。 他的设计目标是在通过学习后,可自动将数据分到已知类别。 平面线性分类 一个简单的分类问题,如图有一些圆圈和一些正方形,如何找一条最优的直线将他们分开?我们可以找到很多种方法画出这条直线,但怎样的直线才是最优的呢? 距离样本太近的直线不是最优的,因为这样的直线对噪声敏感度高,泛化性较差。 因此我们的目标是找到一条直线,离最近
Opencv训练自己分类注:此文是我整理了网上的各方资料汇集而成,由于在实践中遇到了很多坑,所以把自己的成功训练的经验写下来做个笔记给大家做个参考,本文所使用 opencv版本为3.3 下载链接:Releases - OpenCV1.准备训练样本图片1.1样本的采集:      样本图片最好使用灰度图,且最好根据实际情况做一定的预处理;样本数量越
2009-12-19考了CET英语,心情很差,估计又不过的,哎!英文差!于是看看书,看看自己感兴趣的书今天下午,研究了整个下午的小难题,在8点40分终于搞定了!肚子饿,还没吃饭,还没洗澡,克服了一个不懂的小难题,心理有点体会,想在这里留点纪念,方便别人以后学习。于是乎,我写了:(那些开训练的相关介绍我就不再详细谈了,进入正题)我的问题:有了opencv自带的那些xml人脸检测文档,我们 就可以用
转载 2024-03-23 12:30:24
59阅读
工训备赛日志(三)——基于PaddleLite的垃圾分类模型在树莓派上的部署引言:笔者用树莓派4B,在OpenCv和PaddleLite2.8环境下,将之前训练好的模型成功部署,本文内容分为四个部分,分别是:树莓派4B环境搭建、模型的转换、模型部署、结果演示四个部分。目录:一、树莓派4B环境搭建1.OpenCv-Python安装2.PaddleLite源码编译安装二、模型转换三、模型部署一、树莓派
转载 2024-08-18 14:37:55
134阅读
第一次尝试训练自己的分类,中间经过了一些曲折,终于成功了。在此将过程分享给大家,希望对初学者有帮助。经过实际操作,发现最困难的部分确实是样本的准备,不仅数量要多,而且要包括各种场景,才能最终达到目标检测的目的,这里只是简单介绍一下训练过程。对于目标的准确检测还需要从各个方面进行优化。整个过程分为三步:1、创建样本;2、训练分类;3、利用训练好的分类进行目标检测为了方便进行创建,这里将open
OpenCV的数据类型OpenCV的数据类型基础类型Point类Scalar类Size类Rect类RotatedRectMatx固定矩阵类Vec固定向量类Complex复数类辅助对象cv::TermCriteria 条件终止类cv::Range类cv::Ptr模板和垃圾收集cv::Exception类和异常处理cv::DataType<>模板cv::InputArray和cv::Ou
目录前言准备工作硬件软件训练过程第一步:准备样本第二步:生成样本描述文件第三步:生成样本文件vec第四步:训练分类过程中遇到的问题总结前言目前主流的较前卫的目标检测方案是基于深度学习,而传统的方案则是基于手工特征,即通过对图形进行滑动窗口遍历计算机特征值,并训练特征分类以达到检测的目的。本文则是基于级联分类的样本训练过程的记录。准备工作硬件可以长时间训练特征文件的电脑,样本文件的高宽比较大的
  • 1
  • 2
  • 3
  • 4
  • 5