图像的简单几何变换几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排适当的几何变换可以最大程度地消除由于成像角度、透视关系乃至镜头自身原因所造成的几何失真所产生的的负面影响。一、图像的平移在平移之前,需要构造一个平移矩阵,并将其传给仿射函数cv2.warpAffine()import cv2 import numpy as np img = cv2.imread('dog.jpg')
转载 2024-07-04 06:13:18
50阅读
关于K聚类,我曾经在一篇博客中提到过,这里简单的做个回顾。KMeans的步骤以及其他的聚类算法  K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算  其他聚类算法:二分K-均值  讲解一下步骤,其实就是说明一下伪代码随机选择k个点作为起始质心 当任意一个点的簇分配结果发生改变时 对数据集中的每个数据点
转载 2023-09-27 17:29:48
69阅读
伽马校正,最好的,最高效的方法是通过table来访问:核心函数LUT(The Core Function)¶这是最被推荐的用于实现批量图像元素查找和更该操作图像方法。在图像处理中,对于一个给定的值,将其替换成其他的值是一个很常见的操作,OpenCV 提供里一个函数直接实现该操作,并不需要你自己扫描图像,就是:operationsOnArrays:LUT() <lut> Mat loo
基于Python详解伽马变换在数字图像处理的作用  1.概述¶  伽玛变换又名指数变换、幂次变换或幂律变换,是另一种常用的非线性变换 伽马变换主要用于图像的校正,将灰度过高或者灰度过低的图片进行修正,增强对比度。变换公式就是对原图像上每一个像素值做乘积运算:$$ s = c \cdot r^ \gamma \quad r \in
# Python OpenCV Gamma 校正指南 在计算机视觉与图像处理的领域,Gamma 校正是一种对图像进行调整的方式,以便更好地呈现出照片的亮度和细节。本文将指导你如何使用 Python 和 OpenCV 库实现 Gamma 校正。对于初学者来说,本文提供了一个清晰的流程和详细的代码指导。 ## 工作流程 以下是实现 Gamma 校正的步骤: | 步骤 | 操作
原创 2024-09-16 03:29:22
307阅读
 rickjinGamma 函数欣赏Each generation has found something of interest to say about the gamma function. Perhaps the next generation will also.—Philip J.DavisGamma 函数从它诞生开始就被许多数学家进行研究,包括高斯、勒让德、威尔斯特拉斯、柳
转载 2023-12-25 21:15:33
48阅读
OpenCV与图像处理学习四——图像几何变换:平移、缩放、旋转、仿射变换与透视变换二、图像的几何变换2.1 图像平移2.2 图像缩放(上采样与下采样)2.3 图像旋转2.4 仿射变换2.5 透视变化2.6 几何变化小结 续上次的笔记:OpenCV与图像处理学习三——图像基本操作(1)这次笔记主要的内容是图像的几何变换:包括平移、缩放、旋转、仿射变换和透视变换。对应的OpenCV官方python文
Hough(霍夫)变换是一种用于检测线、圆或者图像中其它简单形状的方法。最初Hough变换是一种线变换,这是一种相对较快的检测二值图像中直线的方法。 Hough线变换的基本理论是:二进制图像中的任何点都可能属于某些可能的线。如果我们将每一条线参数化,如斜率为a,截距为b,原始图像中的点就可以转换为对应于通过该点的所有线在该平面(a,b)中的点的轨迹。当然也可能是一部分轨迹。如果我们将原图中每个非0
转载 2024-05-08 22:25:20
56阅读
几何变换几何变换可以看成图像中物体(或像素)空间位置改变,或者说是像素的移动。几何运算需要空间变换和灰度级差值两个步骤的算法,像素通过变换映射到新的坐标位置,新的位置可能是在几个像素之间,即不一定为整数坐标。这时就需要灰度级差值将映射的新坐标匹配到输出像素之间。最简单的插值方法是最近邻插值,就是令输出像素的灰度值等于映射最近的位置像素,该方法可能会产生锯齿。这种方法也叫零阶插值,相应比较复杂的还有
转载 2024-03-21 13:28:05
63阅读
图像的简单几何变换几何变换不改变图像的像素值,只是在图像平面上进行像素的重新安排适当的几何变换可以最大程度地消除由于成像角度、透视关系乃至镜头自身原因所造成的几何失真所产生的的负面影响。一、图像的平移在平移之前,需要构造一个平移矩阵,并将其传给仿射函数cv2.warpAffine() import cv2 import numpy as np img = cv2.imread('dog.jpg
转载 2024-03-19 13:04:57
129阅读
目标在本节中,将学习使用OpenCV查找图像的傅立叶变换利用Numpy中可用的FFT函数傅立叶变换的某些应用程序函数:cv2.dft(),cv2.idft()等理论傅立叶变换用于分析各种滤波器的频率特性。对于图像,使用2D离散傅里叶变换(DFT)查找频域。一种称为**快速傅立叶变换(FFT)**的快速算法用于DFT的计算。关于这些的详细信息可以在任何图像处理或信号处理教科书中找到。对于正弦信号,
      霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法。主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等)。最基本的霍夫变换是从黑白图像中检测直线(线段)。霍夫空间霍夫变换的关键是霍夫空间。                &nbsp
学习opencv之图像傅里叶变换dft http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/core/discrete_fourier_transform/discrete_fourier_transform.html 在学习信号与系统或通信原理等课程里面可能对傅里叶变换有了一定的了解。我们知道傅里叶变换是把
目录一、 gamma函数二、Beta分布三、贝叶斯估计四、贝叶斯估计的运用 一、 gamma函数1.在实数域上伽玛函数定义为Gamma的重要性质包括下面几条:递推公式:对于正整数n, 有 因此可以说Gamma函数是阶乘的推广。关于递推公式,可以用分部积分完成证明:由洛必达法则,易知括号内第一项为0, 则可以得出。二、Beta分布贝塔分布,也称B分布,是指一组定义在(0,1)区间的连续概率分布,有
opencv-图像基础知识-图像放射变换笔者工作环境: win10 vscode方法一:代码:import cv2 import numpy as np img = cv2.imread(r"C:\Users\lenovo\Desktop\python\python_vision\image.jpg",1) cv2.imshow("img",img) imginfo = img.shape
基于OpenCV 的图像极坐标变换目的Halcon算法实现OpenCV算法实现原理极坐标变换极坐标反变换原始图像->变换->反变换代码 目的极坐标变换的主要目的为将环形区域变换为矩形区域,从而便于字符识别等操作。最初接触极坐标变换为Halcon中的例程(检测啤酒瓶瓶口缺陷* inspect_bottle_mouth.hdev*)。 本项目就是基于OpenCV将图像用极坐标表示,实现圆
转载 2024-08-29 18:01:34
18阅读
在Hough检测一章中出现了代码验证出错问题,由于进度原因在此只贴出另外一个相关的链接,后期修复好程序的Bug后再将具体内容贴上详情文章及代码请查阅轮廓,直线圆的拟合边缘检测Canny边缘检测查阅函数可得原型CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, double th
转载 2024-02-19 10:27:33
55阅读
图像变换傅里叶变换目标   本小节我们将要学习:   • 使用 OpenCV 对图像进行傅里叶变换   • 使用 Numpy 中 FFT(快速傅里叶变换)函数   • 傅里叶变换的一些用处   • 我们将要学习的函数有:cv2.dft(),cv2.idft() 等原理   傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT
分水岭算法在opencv中算是比较重要的算法,主要是对图像的分割和提取,能够对认为是同一区域的部分分割出来,特别是针对一些图像中所要提取的特征相互接触,用普通的阈值分割很难划分出来。(代码学习:贾志刚老师)这次实验对象是堆积的管道,如图所示下图所示(从网上找的):本次主要针对这些圆管的横截面中每个圆孔的识别与定位,在此过程中也遇到了问题,也请各位同仁帮忙指正。import cv2 import n
# Java计算伽马函数的入门指南 作为一名经验丰富的开发者,我很高兴能够帮助你入门Java编程,并指导你实现计算伽马函数(Gamma Function)的程序。伽马函数是一个在数学和计算机科学中广泛应用的函数,它与阶乘有着密切的联系。 ## 流程图 首先,让我们通过一个流程图来了解实现伽马函数计算的整个流程: ```mermaid flowchart TD A[开始] --> B
原创 2024-07-28 05:11:18
94阅读
  • 1
  • 2
  • 3
  • 4
  • 5