简介在图像处理中,平移变换、旋转变换以及放缩变换是一些基础且常用的操作。这些几何变换并不改变图象的象素值,只是在图象平面上进行象素的重新排列。在一幅输入图象中,灰度值仅在整数位置上有定义。然而,输出图象[x,y]的灰度值一般由处在非整数坐标上的值来决定。这就需要插值算法来进行处理,常见的插值算法有最近邻插值、双线性插值和三次样条插值。学习目标了解插值算法与常见几何变换之间的关系理解插值算法的原理掌
转载
2024-06-09 19:44:26
169阅读
1、OpenCV_contrib的安装与一个问题的解决在新版本的opencv中,我们失去了一些函数例如sift,以及这次我们需要使用的grabCut,因此我们需要安装OpenCV-contrib。 我遇到的问题:无法打开opencv_stitching412d.lib 在实际使用时,例如错误信息为:无法打开opencv_stitching412d.lib。 解决方法:1、首先打开你在cmake过程
知识点
图像插值: 是基于模型框架下,从低分辨率图像生成高分辨率图像的过程,用以恢复图像中所丢失信息。图像插值的分类插值,分为图像内插值和图像间插值。其主要应用是对图像进行放大以及旋转等操作。图像内插值:根据一幅较低分辨率图像再生出另一幅均具有较高分辨率的图像。图像内插值实际上是对单帧图像的图像重建过程,这就意味着生成原始图像中没有的数据。图像间插值:也叫图像的超分辨率重建,是指
转载
2023-09-05 15:54:27
0阅读
DataWhale 机器视觉组队学习task11.1 简介中,灰度值仅在整数位置上有定义。然而,输出图象[x,y]的灰度值一般由处在非整数坐标上的值来决定。这就需要插值算法来进行处理,常见的插值算法有最近邻插值、双线性插值和三次样条插值。1.2 算法理论介绍与推荐1.2.1 最近邻插值算法原理,作为插值后的输出。 .一个例子:表示目标图像,表示原图像,我们有如下公式: 另外缩小也是相同
转载
2024-08-11 13:02:29
136阅读
OpenCV框架与图像插值算法 文章目录OpenCV框架与图像插值算法一.简介二.算法理论介绍1.最近邻插值算法原理计算公式效果展示图2.双线性插值算法原理计算公式效果展示图3.映射方法向前映射法向后映射法三.基于opencv的python实现总结 一.简介在图像处理中,平移变换、旋转变换以及放缩变换是一些基础且常用的操作。这些几何变换并不改变图象的象素值,只是在图象平面上进行象素的重新排列。在一
转载
2024-06-07 21:18:22
262阅读
第一部分: 在做数字图像处理时,经常会碰到小数象素坐标的取值问题,这时就需要依据邻近象素的值来对该坐标进行插值。比如:做地图投影转换,对目标图像的一个象素进行坐标变换到源图像上对应的点时,变换出来的对应的坐标是一个小数,再比如做图像的几何校正,也会碰到同样的问题。以下是对常用的三种数字图像插值方法进行介绍。1、最邻近元法 这是最简单的一种插值方法,不
转载
2024-05-10 20:25:40
211阅读
OpenCV图像插值算法1.1 简介中,灰度值仅在整数位置上有定义。然而,输出图象[x,y]的灰度值一般由处在非整数坐标上的值来决定。这就需要插值算法来进行处理,常见的插值算法有最近邻插值、双线性插值和三次样条插值。1.2 学习目标了解插值算法与常见几何变换之间的关系理解插值算法的原理掌握OpenCV框架下插值算法API的使用1.3 内容介绍插值算法原理介绍
最近邻插值算法双线性插值算法Op
转载
2024-05-09 12:06:35
35阅读
OpenCV是一个开源发行的跨平台计算机视觉和机器学习软件库,可以运行在Linux、Windows、Android和Mac OS操作系统上。OpenCV中包括很多类型的算法包,还有第三方及专利算法。在实际工程中,经常需要根据特性定制库,这就需要自行编译OpenCV库。本文记录了编译OpenCV主体库 +contrib第三方库的过程,希望能让大家少走弯路。本机环境:windows10(x64)vis
转载
2024-04-27 08:15:36
27阅读
OpenCV框架图像插值算法1.1 简介1.2 学习目标1.3 内容介绍1.4 算法理论介绍与推荐1.4.1 最近邻插值算法原理1.4.2 双线性插值 1.1 简介在图像处理中,平移变换、旋转变换以及放缩变换是一些基础且常用的操作。这些几何变换并不改变图象的象素值,只是在图象平面上进行象素的重新排列。在一幅输入图象中,灰度值仅在整数位置上有定义。然而,输出图象[x,y]的灰度值一般由处在非整数坐
转载
2024-04-02 14:49:14
95阅读
Task01:OpenCV框架、图像插值算法—图像缩放最近邻插值算法原理在图像处理中,平移变换、旋转变换以及放缩变换是一些基础且常用的操作。这些几何变换并不改变图象的象素值,只是在图象平面上进行象素的重新排列。在一幅输入图象中,灰度值仅在整数位置上有定义。然而,输出图象[x,y]的灰度值一般由处在非整数坐标上的值来决定。这就需要插值算法来进行处理,常见的插值算法有最近邻插值、双线性插值和三次样条插
转载
2024-06-08 18:17:02
67阅读
文章目录1.图像缩放2.图像翻转3.图像的旋转4.仿射变换获取矩阵 1.图像缩放函数 resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None): src:输入的图片 ; dsize:缩放的目标尺寸大小; dst:输入图片; fx:x轴的缩放因子; fy:y轴的缩放因子; interpolation:插值算法;插值算法:
# Python OpenCV 插值的实现教程
在图像处理的工作中,插值是一种核心技术,它通常用于调整图像的大小、旋转图像、扭曲图像等。尤其是在处理图像的时候,插值可以帮助我们在放大或缩小时保持图像的清晰度。本文将带你通过一个简单的示例来实现 Python 中 OpenCV 的插值功能。
## 整体流程
实现 Python OpenCV 插值的整体流程如下表所示:
| 步骤 | 描述
CV基础组队学习-CVPR-北尘南风-Task1import cv2
import matplotlib.pyplot as plt祖传代码,解决图中文显示问题import matplotlib as mpl
# 排除警告信息
import warnings
# matplotlib画图常见参数设置
mpl.rcParams["font.family"] = "SimHei"
# 设置字体
mp
【OpenCV学习】(六)图像基本变换背景图像的变换通常用于数据预处理部分,例如缩放旋转等常见的图像变换方法;在一些深度学习框架内部都分装了图像变换的方法,对训练集做统一的图像变换操作;一、图像缩放函数原型:resize(src,dsize,[fx,fy,interpolation])fx:x轴的缩放因子;fy:y轴的缩放因子;interpolation:插值算法;插值算法有以下几种:1、INTE
转载
2024-09-09 09:53:37
44阅读
在科学计算和数据处理领域,数据插值是我们经常面对的问题。尽管 numpy 自身提供了 numpy.interp 插值函数,但只能做一维线性插值,因此,在实际工作中,我们更多地使用 scipy 的 interpolate 子模块。遗憾的是,scipy.interpolate 只提供了一维和二维的插值算法,而大名鼎鼎的商业软件 Matlab 则有三维插值函数可用。事实上,三维乃至更高阶的插值需求还是挺
转载
2023-10-19 17:11:29
385阅读
1、概念介绍1.1 最近邻插值:最近邻插值算法根据原图像与目标图像的尺寸,计算缩放比例,然后根据缩放比例,计算目标图像所对应的原像素。过程中会产生小数,然后四舍五入,取与这个点最近的点。example:100110120110120130120130140 &nb
转载
2024-04-24 10:17:37
479阅读
样条函数法工具应用的插值方法是利用最小化表面总曲率的数学函数来估计值,从而生成恰好经过输入点的平滑表面。 概念的背景 从概念上讲,采样点被拉伸到它们数量上的高度;样条函数折弯一个橡皮页,该橡皮页在最小化表面总曲率的同时穿过这些输入点。在穿过采样点时,它将一个数学函数与指定数量的最近输入点进行拟合。此方法最适合生成平缓变化的表面,例如高程、地下水位高度或污染程度。 基本形式的最小曲率样条函
转载
2023-10-05 23:43:51
217阅读
训练Object Detection模型SSD完毕之后进入test阶段,每张图像在进入输入层之前需要进行resize操作,以满足CNN模型对输入层size的要求。本文首先介绍了Caffe实现的SSD模型对输入图像的变换规定,引出了OpenCV中的resize方法,最后介绍该方法中的插值参数cv.INTER_LINEAR和该插值方法的原理。caffe_ssdcaffe_ssd在test阶段,对图像的
转载
2024-10-22 14:47:32
71阅读
Python数据插值1. 数据插值2. 导入模块3. 插值函数3.1 多项式3.2 多项式插值3.3 样条插值3.4 多变量插值3.4.1 均匀网格3.4.2 不均匀网格 1. 数据插值插值是一种从离散数据点构建函数的数学方法。插值函数或者插值方法应该与给定的数据点完全一致。插值可能的应用场景:根据给定的数据集绘制平滑的曲线对计算量很大的复杂函数进行近似求值插值和前面介绍过的最小二乘拟合有些类似
转载
2023-07-05 16:46:20
1382阅读
Python 中常用的插值方法 Python中的插值模块是scipy.interpolate,在惯性传感器的处理中主要用到一维的插值函数interp1d。Inter1d函数包含常用的**四种插值方法:分段线性插值,临近插值,球面插值,三次多项式插值。**而Spline就对应其中的三次多项式插值。插值的步骤应该是先根据已有序列拟合出一个函数,然后再在这个序列区间中均匀采样n次,得到插值后的n个序列
转载
2023-06-30 19:30:09
288阅读