1 粒子群算法简介       粒子群算法(Particle swarm optimization, PSO)是一种仿生算法,它是一种 在求解空间中寻找最优解 的简单算法。它与其他优化算法的不同之处在于,它只需要 目标函数,不依赖于目标的梯度或任何微分形式。它也有很少的超参数。      &nbsp
粒子群优化算法简介粒子群优化算法(Particle Swrm Optimization, PSO)是由美国的J.Kenney和R.C.Eberhart于1995年提出。它是基于鸟群社会行为的模拟而发展起来的一种群体随机优化技术。目前已被用于函数优化、神经网络、数据挖掘和模糊系统等。优化问题:使用粒子群优化算法来解决以上的优化问题。主要的变化公式:原理粒子群优化算法来源于对鸟类群体活动规律性的研究,
# Java 粒子群优化算法 ## 引言 粒子群优化(Particle Swarm Optimization, PSO)是一种计算智能的优化算法,它受到鸟群觅食行为的启发。PSO 通过模拟群体智能行为找到优化问题的近似解。这种算法的优势在于其简单易实现、收敛速度快等特点。本文将通过 Java 示例代码来展示粒子群优化算法的实现,并解释其基本原理。 ## 粒子群优化算法原理 粒子群优化算法
原创 7天前
10阅读
粒子群算法原理很简单,用matlab和python都很快实现编程。程序:参数部分,需要修改的可以修改。这个程序实现的是基本粒子群算法,对于提升粒子群算法的表现,可以在上面进行更多的功能添加。import numpy as np import random import matplotlib.pyplot as plt #----------------------PSO参数设置---------
转载 2023-06-05 23:00:21
306阅读
下面是主函数的源程序,优化函数则以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m就可以了通用性很强。
转载 精选 2010-01-05 20:59:00
1608阅读
粒子群优化算法属于群智能(swarm intelligence)优化算法。群智能分两种,一种是粒群优化,另一种是蚁群优化。 群智能概念        假设你和你的朋友正在寻宝,每个人有个探测器,这个探测器可以知道宝藏到探测器的距离。你们一群人在找,每个人都可以把信息共享出去,就跟打dota时你可以有你队友的视野,你可以知道其他所有人距
原创 2011-12-05 19:49:55
10000+阅读
1评论
⛄ 内容介绍一种粒子群算法优化LSTM神经网络的行程时间预测方法,包括如下步骤:步骤S1:采集风电功率数据,进行数据归一化,按比例划分为训练集和测试集;步骤S2:采用粒子群算法优化LSTM神经网络预测模型的各个参数;步骤S3:输入粒子群算法优化好的参数,训练集,进行LSTM神经网络预测模型的迭代优化;步骤S4:利用已训练好的LSTM神经网络模型对测试集进行预测,并评估模型误差.本发明的方法寻优速度
0、优化算法优化算法是一种根据概率按照固定步骤寻求问题的最优解的过程。常见的优化算法有最传统的梯度下降法(Gradient Descent),在自然特性的基础上模拟个体种群的适应性的遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO),收敛速度较快的牛顿法(Newton’s method)及其在牛顿法的基础上使用正定矩阵
from sko.PSO import PSO import matplotlib.pyplot as plt ''' 目标是求目标函数的最小值 粒子群优化算法和蚁群算法类似,主要依靠群体之间的联系寻找最优解和最优输入嘴和 参数介绍: func: 目标函数 ndim: 输入参数的个数 pop: 粒子 ...
转载 2021-08-04 16:22:00
220阅读
群智能 休闲 蚁群优化 粒群优化 粒子群优化 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://nxlhero.blog.51cto.com/962631/734212 粒子群优化算法
原创 2021-07-18 10:48:26
367阅读
1.算法描述PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在一起。(
粒子群优化算法(Particle Swarm Optimization),缩写为PSO, 是近年来发展起来的一种新的进化算法(Evolutionary Algorithm - EA)。PSO算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)和“变异”(Muta
粒子群算法的修正基础的PSO算法可以成功解决一些问题,例如数学优化问题、组合问题即多层神经网络训练等。但也存在着算法收敛性与收敛速度等问题,因此对PSO算法有许多修正方法,用于提升性能。这些修改包括引入惯性权重、最大速度、速度收缩、确定个人最佳和全局最佳(或局部最佳)位置以及不同的速度模型等方法。一、最大速度决定优化算法效率和准确性的很重要的一个方面是 ,即探索能力与利用能力的权衡。指算法探索不同
     本文内容参考matlab R2016a完全自学一本通。     粒子群优化算法(PSO)属于进化算法的一种,它从随机解出发,通过迭代找到最优解。该算法通过适应度来评价解的品质,并通过追随当前搜索到的最优值来寻找全局最优。     假设在一个D维的目标搜索空间中,即每个粒子(解)都是一个D维的向量,粒
一、粒子群算法的概念粒子群优化算法(PSO:Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.   PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他
产生背景粒子群优化(Particle Swarm Optimization, PSO)算法是由美国普渡大学的Kennedy和Eberhart于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢? 最简单有效的就是搜寻目前离食物最近的鸟
一、粒子群算法的概念  粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解.  PSO的优势:在于简单容易实现并且没有许多参数的调节。目前已被广泛应用于函数优化、神经网络训练、模糊系统控制以及其他遗传算法的应用领域。二、粒子群算法分析1、基本思想  粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每
转载 2023-08-11 21:30:58
144阅读
作者:康慎吾 地点:北华航天工业学院粒子群优化算法流程图粒子i的第d维速度更新公式:粒子i的第d维位置更新公式:粒子速度更新公式包含三部分:        第一部分为粒子先前的速度        第二部分为“认知"部分,表示粒子本身的思考,可理解为粒子i当前位
1、概述粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过
  什么是粒子群算法  粒子群算法,也称粒子群优化算法或鸟群觅食算法(Particle Swarm Optimization,PSO)。由J. Kennedy和R. C. Eberhart等人于1995年提出。其属于进化算法的一种,也是从随机解出发,通过迭代寻找最优解,其通过适应度来评价解的品质。  这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。
  • 1
  • 2
  • 3
  • 4
  • 5