产生背景粒子群优化(Particle Swarm Optimization, PSO)算法是由美国普渡大学的Kennedy和Eberhart于1995年提出,它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢? 最简单有效的就是搜寻目前离食物最近的鸟
1. 研究背景它的基本概念源于对鸟群觅食行为的研究。设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。最简单有效的策略:寻找鸟群中离食物最近的个体来进行搜索。PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。用一种粒子来模拟上述的鸟类个体,每个粒子可视为N维搜索空间中的一个搜索个体,粒子的当前位置即为对
1.算法描述粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。    最终算法代码如下: 初始化: 每个粒子获得一个随机解和一个随机的SS (命名为速度) For 在位置 X_{id} 的所有粒子, 计算新的位置 X_{id}': 计算 P_{
粒子群优化算法(PSO)-MATLAB代码关于粒子群优化算法(PSO)的介绍与一种C++实现可以参考链接: PSO介绍及其一种C++实现 ,这里不再赘述。本片博文目的在于提供并简要介绍一种粒子群优化算法(PSO)的MATLAB代码实现。本文提供的MATLAB代码中,PSO算法本身被封装成一个函数,优化目标函数的句柄作为PSO的输入参数,从而成为了一个较高独立性的函数模块。以下为pso算法对应的函数
粒子群优化算法1.1 粒子群优化算法简介粒子群优化算法(Particle Swarm Optimization,PSO)是进化计算的一个分支,是一种模拟自然界的生物活动的随机搜索算法。PSO模拟了自然界鸟群捕食和鱼群捕食的过程。通过群体中的协作寻找到问题的全局最优解。它是1995年由美国学者Eberhart和Kennedy提出的,现在已经广泛应用于各种工程领域的优化问题之中。1.1.1 思想来源从
1 粒子群算法简介       粒子群算法(Particle swarm optimization, PSO)是一种仿生算法,它是一种 在求解空间中寻找最优解 的简单算法。它与其他优化算法的不同之处在于,它只需要 目标函数,不依赖于目标的梯度或任何微分形式。它也有很少的超参数。      &nbsp
粒子群优化算法简介粒子群优化算法(Particle Swrm Optimization, PSO)是由美国的J.Kenney和R.C.Eberhart于1995年提出。它是基于鸟群社会行为的模拟而发展起来的一种群体随机优化技术。目前已被用于函数优化、神经网络、数据挖掘和模糊系统等。优化问题:使用粒子群优化算法来解决以上的优化问题。主要的变化公式:原理粒子群优化算法来源于对鸟类群体活动规律性的研究,
粒子群算法原理很简单,用matlab和python都很快实现编程。程序:参数部分,需要修改的可以修改。这个程序实现的是基本粒子群算法,对于提升粒子群算法的表现,可以在上面进行更多的功能添加。import numpy as np import random import matplotlib.pyplot as plt #----------------------PSO参数设置---------
转载 2023-06-05 23:00:21
306阅读
下面是主函数的源程序,优化函数则以m文件的形式放在fitness.m里面,对不同的优化函数只要修改fitness.m就可以了通用性很强。
转载 精选 2010-01-05 20:59:00
1608阅读
粒子群优化算法属于群智能(swarm intelligence)优化算法。群智能分两种,一种是粒群优化,另一种是蚁群优化。 群智能概念        假设你和你的朋友正在寻宝,每个人有个探测器,这个探测器可以知道宝藏到探测器的距离。你们一群人在找,每个人都可以把信息共享出去,就跟打dota时你可以有你队友的视野,你可以知道其他所有人距
原创 2011-12-05 19:49:55
10000+阅读
1评论
一、简介粒子群算法是由Kennedy和 Eberhart于1995年提出的,算法模拟鸟群飞行觅食的行为,通过鸟之间的集体协作使群体达到最优与遗传算法类似,它也是基于群体迭代,但无交叉变异算子,群体在解空间中追随最优粒子进行搜索。粒子群算法初始化为一群随机粒子,然后通过迭代找到最优解。每次迭代 ,粒子通过跟踪2个“极值”:粒子本身所找到的最优解 PBest 和群体找到的最优解 GBest 以更新自己
⛄ 内容介绍一种粒子群算法优化LSTM神经网络的行程时间预测方法,包括如下步骤:步骤S1:采集风电功率数据,进行数据归一化,按比例划分为训练集和测试集;步骤S2:采用粒子群算法优化LSTM神经网络预测模型的各个参数;步骤S3:输入粒子群算法优化好的参数,训练集,进行LSTM神经网络预测模型的迭代优化;步骤S4:利用已训练好的LSTM神经网络模型对测试集进行预测,并评估模型误差.本发明的方法寻优速度
目录一、粒子群算法的概念二、粒子群算法分析1、基本思想2、更新规则3、PSO算法的流程和伪代码4、PSO算法举例三、粒子群算法(PSO)仿真程序1、C++代码2、Python代码3、MATLAB代码四、参考资料写在前面:粒子群算法很古老了,资料也很多,大部分寻优算法思想类似,本文稍作整理,并在文末分别附上C++、Python、MATLAB程序,如果本文对你有所帮助,请点赞支持一下!这是遗传算法的原
from sko.PSO import PSO import matplotlib.pyplot as plt ''' 目标是求目标函数的最小值 粒子群优化算法和蚁群算法类似,主要依靠群体之间的联系寻找最优解和最优输入嘴和 参数介绍: func: 目标函数 ndim: 输入参数的个数 pop: 粒子 ...
转载 2021-08-04 16:22:00
220阅读
群智能 休闲 蚁群优化 粒群优化 粒子群优化 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 、作者信息和本声明。否则将追究法律责任。http://nxlhero.blog.51cto.com/962631/734212 粒子群优化算法
原创 2021-07-18 10:48:26
367阅读
1.算法描述PSO算法是一种随机的、并行的优化算法。它的优点是:不要求被优化函数具有可微、可导、连续等性质,收敛速度较快,算法简单,容易编程实现。然而,PSO算法的缺点在于:(1)对于有多个局部极值点的函数,容易陷入到局部极值点中,得不到正确的结果。造成这种现象的原因有两种,其一是由于待优化函数的性质;其二是由于微粒群算法中微粒的多样性迅速消失,造成早熟收敛。这两个因素通常密不可分地纠缠在一起。(
       想必大家都知道优化算法,这种智能优化算法咱们就不多说,现在我们不讲原理,直接展示怎么实现怎么用的一个过程,最终目的在与我们会改和调用这个算法。  clc;clear;close all; f= @(x) - (x - 10) .^ 2 + x .* sin(x) .* cos(2 * x) - x .* sin(2 * x
初探粒子群优化算法(PSO)粒子群优化算法简介PSO的优点PSO的缺点PSO的原理及基本概念算法描述参数分析粒子群的拓扑结构初始化时的前人经验 粒子群优化算法简介粒子群优化算法(PSO)最初是由Kennedy和Eberhart博士于1995年受人工生命研究的结果启发,在模拟鸟群觅食过程中的迁徙和群集行为时提出的一种基于群体智能的演化计算技术。 PSO是一种随机全局优化技术,通过粒子间的相互作用发现
粒子群优化算法(Particle Swarm Optimization),缩写为PSO, 是近年来发展起来的一种新的进化算法(Evolutionary Algorithm - EA)。PSO算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover)和“变异”(Muta
粒子群算法的修正基础的PSO算法可以成功解决一些问题,例如数学优化问题、组合问题即多层神经网络训练等。但也存在着算法收敛性与收敛速度等问题,因此对PSO算法有许多修正方法,用于提升性能。这些修改包括引入惯性权重、最大速度、速度收缩、确定个人最佳和全局最佳(或局部最佳)位置以及不同的速度模型等方法。一、最大速度决定优化算法效率和准确性的很重要的一个方面是 ,即探索能力与利用能力的权衡。指算法探索不同
  • 1
  • 2
  • 3
  • 4
  • 5