题目:一种新的离散粒子群优化算法中文摘要 粒子群优化算法在许多优化问题上表现得非常好。粒子群优化算法的缺点之一是假设算法中的变量为连续变量。本文提出一个新的粒子群优化算法,能够优化离散变量。这个新算法被称为整数和分类粒子群优化算法,该算法融合了分布估计算法的思想,即粒子代表概率分布而不是解的值,并且PSO更新修改了概率分布。本文
转载
2023-08-25 17:31:00
228阅读
文章目录一、导入第三方库二、初始化粒子群算法的相关参数三、定义目标函数四、初始化粒子数和速度五、挑选个体最优解和全局最优解六、迭代优化七、可视化图像 本篇文章以实现如下需求为例,用Python实现粒子群算法:求解 y=sin(10πx)/x x在[1,2] 之间的最大值。所展示代码无脑复制粘贴即可运行。一、导入第三方库from random import random
import numpy
转载
2023-10-08 12:28:20
80阅读
⛄ 内容介绍一种粒子群算法优化LSTM神经网络的行程时间预测方法,包括如下步骤:步骤S1:采集风电功率数据,进行数据归一化,按比例划分为训练集和测试集;步骤S2:采用粒子群算法优化LSTM神经网络预测模型的各个参数;步骤S3:输入粒子群算法优化好的参数,训练集,进行LSTM神经网络预测模型的迭代优化;步骤S4:利用已训练好的LSTM神经网络模型对测试集进行预测,并评估模型误差.本发明的方法寻优速度
粒子群算法介绍优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机
背景粒子群优化(Particle Swarm Optimization, PSO),又称微粒群算法,是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群匹配M. M. Millonas在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(par
注:本篇随笔依据《Matlab在数学建模上的应用》中第5章介绍来写,主要介绍粒子群算法思想及其Matlab实现(博客以及Matlab小白,若有不当欢迎指出)粒子群算法(PSO)简介PSO属于智能算法,智能算法都属于软计算(动态自适应的求解方式)。
PSO依托群鸟觅食模型(Boid模型)寻找最优值。粒子群算法的基本理论群鸟觅食模型中,每只鸟的飞行基于自身经验和群体经验。
Boid模型遵守3个行为准则
转自:粒子群算法(Particle Swarm Optimization,PSO)是20世纪90年代兴起的一门学科,因其概念简明、实现方便、收敛速度快而为人所知。粒子群算法的基本思想是模拟鸟群随机搜寻食物的捕食行为,鸟群通过自身经验和种群之间的交流调整自己的搜寻路径,从而找到食物最多的地点。其中每只鸟的位置/路径则为自变量组合,每次到达的地点的食物密度即函数值。每次搜寻都会根据自身经验(自身历史搜
转载
2023-10-25 14:46:58
169阅读
PSOIndividual.py
import numpy as np
import ObjFunction
import copy
class PSOIndividual:
'''
individual of PSO
'''
def __init__(self, vardim, bound):
'''
vardim: di
转载
2023-05-31 23:37:29
493阅读
粒子群优化PSO引言在机器学习问题中以及实际实践中,大多数的建模与控制问题最终都可以转化为一个约束或者无约束的优化问题,这些问题一般比较复杂,主要表现为规模大、维数高、非线性、非凸以及不可微等性质,而且由于非凸的原因往往存在较多的井点,传统的基于梯度的优化算法收敛速度快,但是对于初始值比较敏感,容易陷入局部最优(这也一直以来是bp神经网络的问题),对于高维复杂的函数难以实现高效优化。粒子群优化(P
原创
2021-03-24 20:21:57
372阅读
伪代码如图:
首先,值得注意的是,最上面标题中有xt-1, ut, zt。 这说明,粒子滤波器的input就是这三个东西(当然还要有计算其他东西所需要的参数)。
他们分别是:
xt-1上一个时间点的状态向量;
ut这个时间点的控制向量;
zt这个时间点的测量向量;
xt[m] 是第m个粒子的意思。
xt bar 也就是x上面有横杠的是所有粒子的平均值。
算法顺序就是
初始化粒子。设置N个粒子,每
转载
2019-12-24 19:02:00
250阅读
2评论
粒子群优化算大 : 需要调整的参数较少,易于实现,是一种全局的搜索算法。优势:在于简单容易实现,同时又有深刻的智能背景,既史和科学研究,有特别适合工程应用。 粒子群优化算法参数主要包括:种群规模m(粒子个数),惯性权重w,加速常数c1和c2,最大速度Vmax,最大迭代次数T。 粒子一般取值20-40 ...
转载
2021-10-23 20:45:00
256阅读
2评论
原始粒子群算法 粒子群算法(Particle Swarm Optimization, PSO)的基本思想是随机初始化一群没有体积没有质量的粒子
原创
2022-08-07 00:10:22
484阅读
一、简介粒子群算法是由Kennedy和 Eberhart于1995年提出的,算法模拟鸟群飞行觅食的行为,通过鸟之间的集体协作使群体达到最优与遗传算法类似,它也是基于群体迭代,但无交叉变异算子,群体在解空间中追随最优粒子进行搜索。粒子群算法初始化为一群随机粒子,然后通过迭代找到最优解。每次迭代 ,粒子通过跟踪2个“极值”:粒子本身所找到的最优解 PBest 和群体找到的最优解 GBest 以更新自己
一:基本信息1标题:《基于多目标粒子群算法的智能组卷研究》2时间:20133来源:东北师范大学硕士学位论文4关键词:智能组卷;计算机辅助测验;层次分析法;粒子群优化算法;多目标粒子群优化算法。二:研究内容 1:研究背景。 2:研究现题库系统建设。 
转载
2023-08-25 16:41:59
95阅读
1 简介基于精确的铁路客运量预测对于国家和企业的规划管理非常重要,为提高预测的精度,提出粒子群算法(PSO)与长短时记忆神经网络相结合的预测模型(PSO-LSTM).LSTM与传统的全连接神经网络不同,其避免梯度消失,具有记忆过去信息的能力.由于LSTM的神经元数量,学习率和迭代次数难以确定,利用IPSO对这些参数进行优化.将相关性分析得到的铁路营业里程,国家铁路客车拥有量,国内生产总值和年末总人
转载
2023-07-24 18:46:21
159阅读
1.算法描述粒子群优化算法(PSO),粒子群中的每一个粒子都代表一个问题的可能解, 通过粒子个体的简单行为,群体内的信息交互实现问题求解的智能性。 在求解TSP这种整数规划问题的时候, PSO显然与ACO不同, PSO需要对算法本身进行一定的修改, 毕竟PSO刚开始是应用在求解连续优化问题上的. 在路径规划中,我们将每一条路径规划为一个粒子,每个粒子群群有 n 个粒
转载
2023-10-23 07:44:02
73阅读
如果遇到的优化问题特别复杂的话,启发式算法就是我们求解问题的一大法宝。 启发式搜索与盲目搜索的区别:利用中间信息改进搜索策略 连续优化:连续型变量 组合优化:离散型变量 今天我们就来学习第一个智能优化算法:粒子群算法,其全称为粒子群优化算法(Particle Swarm Optimization,P ...
转载
2021-09-05 16:02:00
1186阅读
2评论
粒子群优化Fighting365机器学习算法与Python学习引言在机器学习问题中以及实际实践中,大多数的建模与控制问题最终都可以转化为一个约束或者无约束的优化问题,这些问题一般比较复杂,主要表现为规模大、维数高、非线性、非凸以及不可微等性质,而且由于非凸的原因往往存在较多的井点,传统的基于梯度的优化算法收敛速度快,但是对于初始值比较敏感,容易陷入局部最优(这也一直以来是bp神经网络的问题),对于
原创
2021-04-08 20:53:23
721阅读
引言在机器学习问题中以及实际实践中,大多数的建模与控制问题最终都可以转化为一个约束或者无约束的优化问题,这些问题一般比较复杂,主要表现为规模大、维数高、非线性、非凸以及不可微等性质,而且由于非凸的原因往往存在较多的井点,传统的基于梯度的优化算法收敛速度快,但是对于初始值比较敏感,容易陷入局部最优(这也一直以来是bp神经网络的问题),对于高维复杂的函数难以实现高效优化。粒子群优化(ParticleS
原创
2021-01-05 20:01:53
1026阅读
粒子群算法 粒子群算法是在1995年由Eberhart博士和Kennedy博士一起提出的,它源于对鸟群捕食行为的研究。它的基本核心是利用群体中的个体对信息的共享从而使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得问题的最优解。设想这么一个场景:一群鸟进行觅食,而远处有一片玉米地,
转载
2018-10-26 20:50:00
200阅读
2评论