几个问题:1、停用次应该去到什么程度??2、比如我选了参数topicNumber=100,结果中,其中有80个topic,每个的前几个words很好地描述了一个topic。另外的20个topic的前几个words没有描述好。这样是否说明了topicNumber=100已经足够了?3、LDA考虑了多少文件之间的关系?4、参数 alpha,beta怎么取?? alpha=K/50 ?? b=0.1(0.01) ??========================================看了几篇LDA的文档,实在写的太好了,我只能贴点代码,表示我做过lda了public class LdaM
转载 2013-04-13 23:04:00
237阅读
2评论
LDAP概述目录系统是关于某些类别的对象(例如人)的信息列表。目录可以用于查找特定对象的信息,也可以反方向查找满足特定需求的对象。 企业中的员工通讯录就是一个目录系统。目录访问协议(directory access protocol)就是用来访问目录中数据的标准化方式。最广泛使用的是 轻量级目录访问协议(lightweight directory access protocol,LDAP
前言LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解一下它的算法原理。除非特别声明,本文中的LDA均指的是线性判别分析(Linear Discriminant Analysis),它与自然语言处理领域中的LDA隐含狄利克雷分布(Latent Dirichlet Allocation)是有本质上的区别的,后者是一种处理文档的主题模型。一、LDA
实验内容1.将LDA在训练样本上的低维表示结果可视化。 2.使用距离最短对测试样本进行分类。实验代码clear;clc; %% 导入数据 load("train.mat"); x=train(:,1:4); y=train(:,5); load("test.mat"); x_test=test; % *********************问题二******************* % **
1.1 配置ldap认证  官网地址:https://pypi.org/project/django-auth-ldap/1.3.0/  1、django使用ldap认证需要安装下面两个模块(这里是在linux下测试的)      1.安装Python-LDAP(python_ldap-2.4.25-cp27-none-win_amd64.whl)pip install python_ldap-2
转载 2023-11-29 14:48:10
67阅读
目录一、前言二、什么是LDA?三、LDA原理1.二分类问题2.多分类问题3.几点说明 四、算法实现一、前言        之前我们已经介绍过PCA算法,这是一种无监督的降维方法,可以将高维数据转化为低维数据处理。然而,PCA总是能适用吗?        考虑如下数据点:     
最近一直在学opencv库里人脸识别中的一些算法代码,有一个模块里有三种算法PCA、LDA、LBPH用来识别人脸,PCA算法本身的基本的数学原理已在上篇文章中有所介绍,这篇文章主要介绍LDA算法的基本的数学原理,同样是搜索网络的资源看到有一篇线性判别分析(Linear Discriminant Analysis, LDA)算法分析 - warmyellow的专栏 -在这里呢,就拿过来转到自己的博客
LDA 主题模型LDA的应用方向信息提取和搜索文档分类/聚类、文章摘要、社区挖掘基于内容的图像聚类、目标识别生物信息数据的应用基础函数LDA基本函数LDA涉及的问题共轭先验分布Dirichlet分布LDA模型:Gibbs采样算法学习参数共轭先验分布在贝叶斯概率理论中,如果后验概率p(θ|x)和后验概率p(θ)满足同样的分布律,那么,先验分布和后验分布被叫做共轭分布,同时先验分布叫做似然函数的共轭先
转载 2024-05-07 23:34:07
32阅读
如何实现Python LDA代码 ## 引言 LDA(Latent Dirichlet Allocation)是一种常用的文本主题模型,可以用于发现文本集合中隐藏的主题结构。对于刚入行的开发者来说,学习如何实现Python LDA代码可能有些困难。本文将通过展示整个实现过程的流程图和详细说明每一步所需的代码,以帮助你理解如何实现Python LDA代码。 ## 实现流程 下面是实现Python
原创 2023-12-16 09:05:13
24阅读
LDA(Latent Dirichlet Allocation):潜在狄利克雷分布,是一种非监督机器学习技术。它认为一篇文档是有多个主题的,而每个主题又对应着不同的词。一篇文档的构造过程,首先是以一定的概率选择某个主题,然后再在这个主题下以一定的概率选出某一个词,这样就生成了这篇文档的第一个词。不断重复这个过程,就生成了整篇文章(当然这里假定词与词之间是没有顺序的,即所有词无序的堆放在一个大袋子中
   上回我门解读了第三章的简化操作,其实只要了解SpringJDBC操作 再了解Spring LDAP是一件非常容易得事,因为ldap使用的是最初的原理.    我们先简单说下第四章是干什么万应的就OK了 不去细说它了  因为我觉的没必要 .    第四章中所讲的就是先定义一个"查询执行者"的东西 里面有存放了dn(唯一的路径
转载 2024-07-17 10:47:26
29阅读
原作者:我想听相声 理解LDA,可以分为下述5个步骤: 1)一个函数:gamma函数 2)四个分布:二项分布、多项分布、beta分布、Dirichlet分布 3)一个概念和一个理念:共轭先验和贝叶斯框架 4)两个模型:pLSA、LDA 5)一个采样:Gibbs采样共轭先验分布1.1似然函数统计学中,似然函数是一种关于统计模型参数的函数,表示模型参数中的似然性。计算上:给定输出x时,关于参数θ的似
转载 2024-05-13 10:41:58
34阅读
最近在做一个动因分析的项目,自然想到了主题模型LDA。这次先把模型流程说下,原理后面再讲。 lda实现有很多开源库,这里用的是gensim.1 文本预处理大概说下文本的样子,LDA是无监督模型,也就是说不需要标签,只要传入文本就好。LDA要学习文档-主题分布和主题-词分布,所以我们把一个人的数据join在一起作为一条文档。对文档进行分词,使用的jieba分词工具包。注意,这里要做去停用词处理
1 关于主题模型使用LDA做推荐已经有一段时间了,LDA的推导过程反复看过很多遍,今天有点理顺的感觉,就先写一版。隐含狄利克雷分布简称LDA(latent dirichlet allocation),是主题模型(topic model)的一种,由Blei, David M.、Ng, Andrew Y.、Jordan于2003年提出。 主题模型属于聚类方法,是一种无监督的学习方法。与通常的tf-id
字节码指令java 虚拟机的指令由一个字节长度的,代表着某种特定操作的含义的数字,称为操作码,以及跟随其后零至多个代表此操作所需参数的操作数而组成操作码的长度为1个字节,因此最大只有256条基于栈的指令集架构. 在虚拟机的指令集中,大多数的指令都包含了其操作所对应的数据类型信息lload fload也有不包含类型信息的Goto与类型无关Arraylength操作数组类型 加载与
转载 2024-08-26 14:53:43
63阅读
LDA是一种文档主题生成模型,包含词、主题和文档三层结构。所谓生成模型,就是说,我们认为一篇文章的每个词都是通过“以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语”这样一个过程得到。文档到主题服从多项式分布,主题到词服从多项式分布。LDA是一种典型的词袋模型,即它认为一篇文档是由一组词构成的一个集合,词与词之间没有顺序以及先后的关系。一篇文档可以包含多个主题,文档中每一个词都由其中的
主题建模是一种用于找出文档集合中抽象“主题”的统计模型。LDA(Latent Dirichlet Allocation)是主题模型的一个示例,用于将文档中的文本分类为特定的主题。LDA算法为每一个文档构建出一个主题,再为每一个主题添加一些单词,该算法按照Dirichlet分布来建模。那便开始吧!数据在这里将使用到的数据集是15年内发布的100多万条新闻标题的列表,可以从Kaggle下
1. LDA算法简介LDA(线性判别式分析 Linear Discriminant Analysis)属于机器学习中的监督学习算法,常用来做特征提取、数据降维和任务分类。在人脸识别、人脸检测等领域发挥重要作用。LDA算法与PCA算法都是常用的降维技术。二者的区别在于:LDA是一种监督学习的降维技术,也就是说它的每个样本是有类别输出的,而之前所学习的PCA算法是不考虑样本类别输出的无监督降维技术。L
转载 2024-05-05 22:00:09
7阅读
目录什么是LDA主题模型背景知识贝叶斯理论gamma函数多个分布博鲁尼分布二项分布多项分布beta分布Dirichlet 分布开始了解LDAPython建模 什么是LDA主题模型首先说明一下什么是主题模型。这里的主题模型是把一份份不同的文本内容通过某种方式来找到这些文本对应的主题。打个比方:我有一堆新闻类文档,但我想将这对文档进行主题分类。到底是娱乐?军事?政治?等主题。这时候就使用到主题模型。
一,函数文件在matlab中,M文件分为脚本文件和函数文件。如果M文件的第一个可执行语句以function开头,那这个M文件就是函数文件。函数文件内定义的变量为局部变量,只在函数文件内部起作用,当函数文件执行完后,这些内部变量将被清除。本文介绍如何规范地编写一个函数文件。通常,函数文件由函数声明行、H1行、在线帮助文本区、编写和修改记录、函数主体等几个部分组成。格式如下:function 输出形参
转载 2024-04-28 14:37:13
35阅读
  • 1
  • 2
  • 3
  • 4
  • 5