1 关于主题模型使用LDA做推荐已经有一段时间了,LDA的推导过程反复看过很多遍,今天有点理顺的感觉,就先写一版。隐含狄利克雷分布简称LDA(latent dirichlet allocation),是主题模型(topic model)的一种,由Blei, David M.、Ng, Andrew Y.、Jordan于2003年提出。 主题模型属于聚类方法,是一种无监督的学习方法。与通常的tf-id
主题模型LDA的应用 拿到这些topic后继续后面的这些应用怎么做呢: 除了推断出这些主题LDA还可以推断每篇文章在主题上的分布。例如,X文章大概有60%在讨论“空间探索”,30%关于“电脑”,10%关于其他主题。 这些主题分布可以有多种用途: 聚类: 主题是聚类中心,文章和多个类簇(主题)关联。聚类对整理和总结文章集合很有帮助。参看Blei教授和Lafferty教授对于Science杂志的
转载 2017-04-16 19:32:22
179阅读
最近我们被要求撰写关于主题模型LDA的研究报告,包括一些图形和统计输出。 介绍随着越来越多的数据被数字化,获取信息变得越来越困难。我们在本文中重点关注的一个示例是评估公司面临的不同风险领域。为此,我们参考公司提交给证券交易委员会的年度报告,其中提供了公司财务业绩的全面摘要[1],包括公司历史,组织结构,高管薪酬,股权,子公司和经审计的财务报表等信息,以及其他信息。相关视频:文本挖掘:主题模型(LD
前言  上文详细讲解了LDA主题模型,本篇将使用如下几种方式介绍,从整体上了解LDA模型的简单应用采用 lda 库,安装方式:pip install lda 采用 gensim 中的模块,安装方式:pip install gensim 采用 scikit-learn 中模块,安装方式:pip install scikit-learn 本篇代码可见:Github一、lda 库中的 LDA lda A
转载 2024-01-02 11:48:18
361阅读
目录什么是LDA主题模型背景知识贝叶斯理论gamma函数多个分布博鲁尼分布二项分布多项分布beta分布Dirichlet 分布开始了解LDAPython建模 什么是LDA主题模型首先说明一下什么是主题模型。这里的主题模型是把一份份不同的文本内容通过某种方式来找到这些文本对应的主题。打个比方:我有一堆新闻类文档,但我想将这对文档进行主题分类。到底是娱乐?军事?政治?等主题。这时候就使用到主题模型
1. LDA模型是什么LDA可以分为以下5个步骤:一个函数:gamma函数。四个分布:二项分布、多项分布、beta分布、Dirichlet分布。一个概念和一个理念:共轭先验和贝叶斯框架。两个模型:pLSA、LDA。一个采样:Gibbs采样关于LDA有两种含义,一种是线性判别分析(Linear Discriminant Analysis),一种是概率主题模型:隐含狄利克雷分布(Latent Diri
LDA(Latent dirichlet allocation)是有Blei于2003年提出的三层贝叶斯主题模型,通过无监督的学习方法发现文本中隐含的主题信息,目的是要以无指导学习的方法从文本中发现隐含的语义维度-即“Topic”或者“Concept”。隐性语义分析的实质是要利用文本中词项(term)的共现特征来发现文本的Topic结构,这种方法不需要任何关于文本的背景知识。文本的隐性语义表示可以
      通俗理解LDA主题模型   原文:  0 前言    印象中,最开始听说“LDA”这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印过一次,但不知是因为这篇文档的前序铺垫太长(现在才意识到这些“铺垫”都是深刻理解LDA 的基础,但如果没有人帮助初学者
LDA主题模型(算法详解) 一、LDA主题模型简介 LDA(Latent Dirichlet Allocation)中文翻译为:潜在狄利克雷分布。LDA主题模型是一种文档生成模型,是一种非监督机器学习技术。它认为一篇文档是有多个主题的,而每个主题又对应着不同的词。一篇文档的构造过程,首先是以一定的概率选择某个主题,然后再在这个主题下以一定的概率选出某一个词,这样就生成了这篇文档的第一个词。不断重
# LDA主题模型Python代码实现 ## 简介 LDA(Latent Dirichlet Allocation)是一种常用的主题模型,可以用来发现文本语料中的主题结构。在本文中,我将帮助你通过Python代码实现LDA主题模型。 ## 整体流程 以下是LDA主题模型实现的整体流程: ```mermaid journey title LDA主题模型实现流程 section
原创 2023-11-14 08:01:35
598阅读
# 如何实现 LDA 主题模型的 Python 代码 LDA(Latent Dirichlet Allocation)是一种常用的主题建模技术,能够从文本中抽取出潜在的主题。本文将指导你如何使用 Python 实现 LDA 主题模型,步骤如下: ## 一、流程图 | 步骤 | 描述 | |------|------| | 1 | 数据预处理(分词、去停用词等) | | 2 | 构
原创 9月前
285阅读
说明:这是一个机器学习、数据挖掘实战项目 Python实现基于LDA模型进行电商产品评论数据情感分析 前言       在21世纪人工智能大数据时代,网上购物已经成为大众生活的重要组成部分。人们在电商平台上浏览商品并购物,产生了海量的用户行为数据,
[nlp] LDA主题模型1 what is LDA?2 LDA构建流程?2.1 LDA生成过程2.2 LDA整体流程2.2.1 字母定义2.2.2 学习过程References 1 what is LDA?LDA: Latent Dirichlet Allocatio, 文档主题生成模型,也称为一个三层贝叶斯概率模型,包含词、主题和文档三层结构。生成模型:我们认为一篇文章的每个词都是通过“以一
转载 2024-03-15 13:37:30
140阅读
上个学期到现在陆陆续续研究了一下主题模型(topic model)这个东东。何谓“主题”呢?望文生义就知道是什么意思了,就是诸如一篇文章、一段话、一个句子所表达的中心思想。不过从统计模型的角度来说, 我们是用一个特定的词频分布来刻画主题的,并认为一篇文章、一段话、一个句子是从一个概率模型中生成的。D. M. Blei在2003年(准确地说应该是2002年)提出的LDA(Latent Dirichl
转载 2023-06-02 16:28:26
384阅读
LDA 主题模型LDA的应用方向信息提取和搜索文档分类/聚类、文章摘要、社区挖掘基于内容的图像聚类、目标识别生物信息数据的应用基础函数LDA基本函数LDA涉及的问题共轭先验分布Dirichlet分布LDA模型:Gibbs采样算法学习参数共轭先验分布在贝叶斯概率理论中,如果后验概率p(θ|x)和后验概率p(θ)满足同样的分布律,那么,先验分布和后验分布被叫做共轭分布,同时先验分布叫做似然函数的共轭先
转载 2024-05-07 23:34:07
32阅读
随着互联网的发展,文本分析越来越受到重视。由于文本格式的复杂性,人们往往很难直接利用文本进行分析。因此一些将文本数值化的方法就出现了。LDA就是其中一种很NB的方法。 LDA有着很完美的理论支撑,而且有着维度小等一系列优点。本文对LDA算法进行介绍,欢迎批评指正。 本文目录:1、Gamma函数2、Dirichlet分布3、LDA文本建模4、吉普斯抽样概率公式推导5、使用LDA 
(一)LDA作用 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的。 举个例子,有两个句子分别如下: ...
转载 2013-11-12 16:46:00
401阅读
2评论
主题模型主题模型(topic model)是以非监督学习的方式对文集的隐含语义结构(latent semantic structure)进行聚类(clustering)的统计模型主题模型主要被用于自然语言处理(Natural language processing)中的语义分析(semantic analysis)和文本挖掘(text mining)问题,例如按主题对文本进行收集、分类和降维;
一、主题模型解决了哪些问题1、主题模型的概念: 主题模型是提取文本 抽象主题相似度 的一种统计模型,自动分析每个文档,统计文档内词语,根据统计的信息判断当前文档包含哪 些主题以及各个主题所占比例各为多少(将原来 文档-单词 的高维特征数组 >>>>> 文档-主题 的低维数组,因此主题模型可以 起到降维的作用) 2、传统判断文本相似度方法缺点:
1. LDA主题模型想要完成什么任务我们设有20个主题LDA主题模型的目标是为每一篇文章找到一个20维的向量,向量中的20个值代表着这篇文章属于某一个主题的概率大小。是一个类似于聚类的操作。2. 在LDA主题模型下,一篇文章是怎么生成的在LDA主题模型中,文章的生成有三个要素【词语,主题,文章】,词语和主题是多对多的关系,每个词语都可能代表着多个主题,每个主题下也有多个代表的词语;主题
  • 1
  • 2
  • 3
  • 4
  • 5