概览
最短路径
单源最短路径
Dijkstra
Bellman-Ford
SPFA
所有结点对
Floyd
最小生成树
拉曼光谱的概念不同的入射光频率的散射光谱进行分析所得到的分子振动、转动的信息,并应用于分子结构分析研究的一种分析方法,称为拉曼光谱(Ramanspectra)。拉曼光谱的特征 拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关。 &nb
转载
2024-06-26 13:35:07
194阅读
前言首先我们要知道为什么再laserOdometry中只能做到粗估计,而laserMapping能够做到精估计呢?laserMapping中使用scan to map的匹配方法,即最新的关键帧scan(绿色线)与其他所有帧组成的全部地图(黑色线)进行匹配,因此laserMapping中的位姿估计方法联系了所有帧的信息,而不是像laserOdometry中仅仅只利用了两个关键帧的信息,所以位姿估计更
不同于瑞利散射,拉曼散射是光子和介质之间发生的一种非弹性散射。当改变介质外部条件,如温度和压力时,介质的内部状态会发生变化,这种改变可以通过拉曼光谱来表征。拉曼光谱的这个特征是拉曼光谱技术的一大优点,它使得有可能在可见光区研究分子的振动和转动等状态,因此在很多情况下它已成为分子光谱中红外吸收方法的一个重要补充。不同的光谱产生的机制不同,它们各自具有自己的特点。拉曼散射光谱具有以下几个明显的特点:①
转载
2024-09-14 08:29:03
162阅读
此篇,我们来介绍对SERS拉曼光谱的拟合。 一、多峰拟合 1)准备数据。 如下图所示,我们找来了一个细胞的拉曼光谱,并截取了其中的一部分(图中数据表格与实际所使用的不符,实际中,我们已将660-1400 nm之外的数据删掉,而不是在
转载
2024-08-09 17:44:43
805阅读
计量语言学软件Altmann-Fitter阿尔特曼拟合器的使用简介1、Altmann-Fitter是什么1.1 简介1.2 获得地址2、使用说明2.1 数据文件的格式2.2 读取数据2.3 拟合说明2.3.1 读取数据2.3.2 选择模式2.3.3 拟合2.4 指标说明2.4.1 卡方检验2.4.2 P值-probability level3、使用反馈3.1 注意要点参考阅读 1、Altmann
Python是数据科学家十分喜爱的编程语言,其内置了很多由C语言编写的库,操作起来更加方便,Python在网络爬虫的传统应用领域,在大数据的抓取方面具有先天优势,目前,最流行的爬虫框架Scrapy、HTTP工具包urlib2、HTML解析工具、XML解析器lxml等,都是能够独当一面的Python类库。Python十分适合数据抓取工作,对于大数据的处理,Python在大数据处理方面的优势有:1、异
转载
2023-06-28 15:50:52
429阅读
概述Excel固然功能强大,也有许多函数实现数据处理功能,但是Excel仍需大量人工操作,虽然能嵌入VB脚本宏,但也容易染上宏病毒。python作为解释性语言,在数据处理方面拥有强大的函数库以及第三方库,excel作为主要基础数据源之一,在利用数据进行分析前往往需要预先对数据进行整理。因此,本文就python处理excel数据进行了学习,主要分为python对excel数据处理的常用数据类型以及常
转载
2023-08-09 10:53:15
327阅读
目前Python可以说是非常流行,在目前的编程语言中,Python的抽象程度是最高的,是最接近自然语言的,很容易上手。你可以用它来完成很多任务,比如数据科学、机器学习、Web开发、脚本编写、自动化等。▍1、for循环中的else条件这是一个for-else方法,循环遍历列表时使用else语句。下面举个例子,比如我们想检查一个列表中是否包含奇数。那么可以通过for循环,遍历查找。 numbers&
转载
2023-09-14 16:26:18
118阅读
一、基本函数篇1)python strip()函数介绍函数原型声明:s为字符串,rm为要删除的字符序列s.strip(rm) 删除s字符串中开头、结尾处,位于 rm删除序列的字符
s.lstrip(rm) 删除s字符串中开头处,位于 rm删除序列的字符
s.rstrip(rm) 删除s字符串中结尾处,位于 rm删除序列的字符注意: 当rm为空时,默认删除空白符(包括'\n', '\r',
转载
2023-08-14 14:04:31
219阅读
本文仅供交流学习,部分代码根据练习题需求未采用函数进行直接转换。有错误或更好的方法欢迎提出。1.三个数排序输入三个整数x,y,z,将这三个数由小到大排序输出。输入:1 4 3输出:1 3 4a,b,c=input().split()
n=[]
n.append(int(a))
n.append(int(b))
n.append(int(c))
n.sort()
print(n[0],n[1],n[
转载
2023-10-14 14:32:09
340阅读
题记:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。无论,数据分析,数据挖掘,还是算法工程师,工作中80%的时间都用来处理数据,给数据打标签了。而工作中拿到的数据脏的厉害,必须经过处理才能放入模型中。以下是一脏数据表:(表格放在最后供看官下载练习)这张表格有多少处数据问题?大家对数据问题是如何定义的?不妨带着疑问阅读下文;数据处理四性“完全合一”。完整性:单条数据是否存在空值,
转载
2023-07-07 13:45:39
205阅读
Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的数据,而不用像Numpy一样要手工处理缺失的数据,并且Pandas使用轴标签来表示行和列。1、文件读取首先将用到的pandas和numpy加载进来import pandas as pdimport numpy as np读取数据:#csv和xls
转载
2024-01-30 19:10:34
144阅读
preface:最近在整内比赛MDD。遇到一些数据处理方面的事情,用python pandas是最为方便的,远比我想象的强大。几行代码就完成了数据的处理,多个文件的融合,再用sklearn里面的模型跑一跑,就能得到结果。为此,经常记录下来,对数据处理的应用。一、Pandas合集df = pd.read_csv('%s/%s' % (input_path, file_name)):read_csv(
转载
2023-12-02 21:13:37
87阅读
尝试学习Python,更主要还是为了解决工作中的困难。现在的工作,需要汇总和分析所有site的销量、费用和活动执行情况,由于工作量较为庞大,而实际上并不复杂,所以摸索尝试用python进行处理。当然,写到这里的时候,我还是个刚刚完成编程环境搭建的、刚开始接触列表的纯小白,由于工作并不涉及到编程,我决定跳跃发展,直接尝试通过在网上找到的代码来完成Excel数据处理工作,希望在这个过程中逐渐熟悉pyt
转载
2023-05-27 09:30:57
218阅读
1、选择建模数据 我们的数据集有太多的变量,很难处理,我们需要将这些海量的数据减少到我们能理解的程度。 我们肯定要选择变量的一列来进行分析,故我们需要查看数据集中所有列的列表名,这是通过数据框架的Columns属性完成的。 以之前的墨尔本房价为例 import pandas as pd
# 将文件路径保存到变量以便于访问
melbourne_file_path =
转载
2023-06-26 13:24:05
215阅读
Python 字符串切割处理,file()方法读取、写入文件
近期碰到一个问题,两套系统之间数据同步出了差错,事后才发现的,又不能将业务流程倒退,但是这么多数据手工处理量也太大了,于是决定用Python偷个小懒。1、首先分析数据。两边数据库字段的值都是一样,先将这边数据库的数据查询导出,正好是2列120多行的数据。那么目标就是拼接成update from
转载
2020-04-04 14:37:00
272阅读
首先了解使用python进行数据处理常用的两个包:numpy和pandas。numpy最重要的特点就是n维数组对象ndarray是一个快速而灵活的大数据集容器,它是一个通用的同构数据多维容器,即所有的元素必须是相同的类型,每个数组有一个shape(表示维度大小的元组),一个dtype(说明数组数据类型的对象)。1.创建数组常使用的函数有:array,arange 例如: array函数: aran
转载
2023-09-16 21:26:25
481阅读
1、选择建模数据 我们的数据集有太多的变量,很难处理,我们需要将这些海量的数据减少到我们能理解的程度。 我们肯定要选择变量的一列来进行分析,故我们需要查看数据集中所有列的列表名,这是通过数据框架的Columns属性完成的。 以之前的墨尔本房价为例import pandas as pd
# 将文件路径保存到变量以便于访问
melbourne_file_path = '
转载
2023-05-28 21:07:45
301阅读
6.数据处理实例6.1.数据如图: 6.2.需求: 6.3.处理数据: 我个人拿到数据,直接想着转换成DataFrame,然后着手算总分,然后直接数据分组,还是太年轻了...self.df["total"] = self.df.英语 + self.df.体育 + self.df.军训
转载
2023-09-12 15:19:41
65阅读