GPU加速大多数设备的刷新频率是60次/秒,(1000 / 60 = 16.6ms)也就是说浏览器对每一帧的渲染工作要在16ms内完成,超出这个时间,页面的渲染就会出现卡顿现象,影响用户体验。 浏览器在每一帧里面,会依次执行以下动作: js -> style -> layout ->paint -> composite。 1. js: js实现动画效果,DOM元素操作等
转载
2024-03-21 11:51:57
137阅读
光线投射法使用three.js自带的光线投射器(Raycaster)选取物体非常简单,代码如下所示:var raycaster = new THREE.Raycaster();
var mouse = new THREE.Vector2();
function onMouseMove(event) {
// 计算鼠标所在位置的设备坐标
// 三个坐标分量都是-1到1
mo
转载
2024-06-07 19:56:45
103阅读
概述阅读完本文,你将了解 Metal 是如何在 GPU 上执行命令的。让 GPU 来执行任务是通过发送命令来实现的。 该命令可以执行绘图、并行计算或资源管理相关的操作工作。Metal 应用程序和 GPU 之间的关系是客户端-服务器模式:Metal 应用程序是客户端GPU 是服务器可以通过向 GPU 发送命令来发出请求处理完命令后,GPU 通知应用空闲状态下图为 Metal 客户端-服务器模式要将命
转载
2024-03-15 14:51:10
122阅读
GPU的前世1962年MIT的一个博士的画板程序奠定了图形学的基础。但是在随后的20年例,计算机图形学一直在不断发展,不过没有专门的图形处理芯片。1984年SGI推出了专业的高端图形工作站,有了专门的图形硬件,叫做图形加速器。引入了许多经典的概念,如顶点变换和纹理映射。随后的10多年里,SGI又研发了很多图形工作站,但都是面向专业领域,价格昂贵,没法进入消费级市场。不过消费级市场还是出现了一些2D
转载
2024-03-25 20:40:41
88阅读
1.背景介绍物理模拟技术在现代科学和工程领域具有重要的应用价值,例如气候模型、物理学实验、机器人控制、自动驾驶等。然而,随着问题规模和复杂性的增加,传统的计算方法已经无法满足需求。因此,研究人员和工程师需要寻找更高效的计算方法来提高模拟速度和精度。GPU加速技术是一种高效的计算方法,它利用了GPU(图形处理单元)的并行处理能力来加速物理模拟。GPU具有大量的处理核心和高速内存,使得它在处理大量数据
转载
2024-07-19 19:59:49
475阅读
本系列文章根据Intel开源GPU加速技术整理而得。前言在深度学习大行其道的今天,很少有人再关注底层GPU加速的实现。也许是因为实现起来太复杂,但更多的应该是无法快速编程,实现几亿个求解参数的快速实现,而用python接口只需要几行代码。不可否认的是,在一些场合,如果想实现GPU的加速,比如图像增强,图像去噪等,那么就必须要DIY一个加速代码。如果不具备这些知识,将很影响效率。或者说,你想写一个自
转载
2024-05-23 20:16:13
125阅读
1. for 循环 循环体中减少计算: for (let i =0, len = attr.length; i< len; i++) {
// xxx
}
// 替换下面的
for (let i =0; i< attr.length; i++) {
// xxx
} 2. 深度拷贝中map代替数组
转载
2024-07-26 18:18:22
146阅读
目录一、概述二、基本概念三、硬件加速的启用四、拓展一、概述 项目开发中遇到因启用硬件加速导致的闪屏问题,特此整理相关基础知识,已备后续查阅。二、基本概念概念1:什么是GPU GPU是显卡上的一块芯片,英文全称Gr
转载
2023-12-25 10:17:42
188阅读
背景:最近进入到深度学习的行列中,由于笔记本带有独显,并且在网上看到许多博客都说深度学习通过GPU加速可以提高训练的速度,所以我就在想我也不能浪费了我的独显,最后决定尝试配置CUDA和cuDNN来体验一下GPU加速带来的乐趣。配置:系统:Windows10 2004 内存:16GB 处理器:Intel® Core™ i7-9750H CPU @ 2.60GHz 图形卡:NVIDIA GeForce
转载
2024-03-23 09:03:02
191阅读
当对一个程序进行加速的时候,很多时候需要预估出程序使用GPU加速后的加速比(比如你老板不懂GPU,或者甲方会问你预估加速比等等)。从大二接触GPU加速,到现在大概有6年时间,大大小小的项目也做了十几个,很多时候都需要事先回答加速比会有多少这个问题。这里简单的说一下自己的经验,欢迎各位大神指点。文中的经验基于目前主流的显卡,比如GTX1080,最低也得是GTX9**系列的。1.阿姆达尔定律谈加速比,
转载
2024-03-27 10:29:58
63阅读
目录任务介绍环境所需相关软件下载与安装C语言:不调用库的GPU加速FFT代码C语言:调用fftw库的未使用GPU的FFT代码C语言:调用cufft库的GPU加速FFTgnuplot安装画图,maltab编写的FFT运算结果对比matlab测试信号和测试时的坑 任务介绍时隔多年仍然逃不掉写C的命运……因为这个任务周期不短还踩了好多坑,必须记录一下了。 任务简单要求就是使用C语言编写一个GPU加速的
转载
2024-02-28 10:33:29
156阅读
从导入到编辑与分享,Pinnacle Studio 16 让用户能够享用行业领先、经过好莱坞实践检验的立体 3D 技术。 用户可以从 GoPro 3D 摄像机等来源导入 3D 视频片段,在各种视图模式下进行编辑,添加真正的 3D 特效,借助
NVIDIA 3D Vision优化和独家的
NVIDIA® Quadro®与
G
转载
2024-03-28 10:21:16
82阅读
兼容的图形处理器(也称为图形卡、显卡或 GPU)可让您获得更好的 Photoshop 性能体验并利用其更多功能。此外,如果计算机的图形处理器或其驱动程序与 Photoshop 不兼容,会发生许多显示问题、性能问题、错误或崩溃。Photoshop 图形处理器 (GPU) 和图形驱动程序问题故障诊断由于图形驱动程序存在缺陷、不受支持,或者图形处理器(也称为图形卡、视频卡或 GPU)不兼容所引发的常见问
转载
2024-03-17 14:24:34
806阅读
这个测试,是我自己在日常的产品对比中累积的,同样版本的软件,完全取决于CPU的性能(GPU加速仅供参考)可以看得出一个笔记本持续的一段时间内,散热、性能的发挥。方法是用格式工厂(比较low,但是很普遍、易用,其实是我只会用这么low的软件,刚和我女儿学会了快剪辑)剪同一段视频,从视频中截取10分钟,加上一张图片。新旧版本的软件,因为优化的提高,会有几个百分点的差异,我会一直用固定版本的软件。方法:
转载
2024-08-25 16:58:13
760阅读
这几年,图形API领域十分热闹。首先是AMD Mantle,虽仅支持自家GCN架构显卡,但开创了访问硬件底层、提高执行效率的先河。微软DirectX 12与其有异曲同工之妙,而且兼容所有厂商硬件,走得也更远。 接下来,苹果提出了Metal,同样的底层图形与计算,但首次走入了移动领域(也即将支持OS X)。 传统的DirectX、OpenGL最大好处是广泛的硬件兼容性,但为此做出的牺牲就是过大的
转载
2024-07-30 16:38:44
128阅读
2月4日,中国数据中心领导厂商浪潮在其“整机柜服务器2015年度产品策略发布会”上,正式发布了基于NVIDIA Tesla GPU 加速器的整机柜服务器——SmartRack 协处理加速整机柜服务器,这是一款密集型高度并行计算服务器,主要面向人工智能、深度学习等应用。通过和全球视觉计算领域的领导者NVIDIA公司紧密合作,浪潮SmartRack 协处理加速整机柜服务器实现了在1U空间里完美部署4个
转载
2024-05-07 14:18:25
118阅读
CUDA为开发人员提供了多种库,cuFFT库则是CUDA中专门用于进行傅里叶变换的函数库。因为在网上找资料,当时想学习一下多个 1 维信号的 fft,这里我推荐这位博主的文章,但是我没有成功,我后来自己实现了。1. 下载想使用cuFFT库,必须下载,可以从CUDA官网下载软件包,也可以通过我提供的模板下载资料里有。 提取码: dp52 一键安装即可。注意我的是win10系统。 默认安装位置为 C:
转载
2024-02-23 12:40:06
446阅读
javascript如何实现gpu加速?下面本篇文章给大家介绍一下。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。一、什么是Javascript实现GPU加速?CPU与GPU设计目标不同,导致它们之间内部结构差异很大。CPU需要应对通用场景,内部结构非常复杂。而GPU往往面向数据类型统一,且相互无依赖的计算。所以,我们在Web上实现3D场景时,通常使用WebGL利用GPU运算(大
转载
2024-03-15 11:20:17
90阅读
cuDNN的全称为NVIDIA CUDA® Deep Neural Network library,是NVIDIA专门针对深度神经网络(Deep Neural Networks)中的基础操作而设计基于GPU的加速库。cuDNN为深度神经网络中的标准流程提供了高度优化的实现方式,例如convolution、pooling、normalization以及activation layers的前向以及后向
转载
2024-02-27 14:47:04
73阅读
硬件软件环境Ubuntu 16.10GTX 750ti(需要一张NVIDIA的显卡,越新越好,新卡的Compute Capability版本高)NVIDA CUDA 8.0NVIDIA 驱动 375.26gcc version 4.91. 基础环境配置因为Ubuntu是机子新装的,所以我安装了Linux自己用的一些基本环境和python科学计算的库,请各取所需。基本开发安装vim sudo apt
转载
2024-07-18 06:42:32
76阅读