近日,百度云与联捷计算科技(CTAccel)共同推出基于FPGA的图像加速解决方案(CIP,CTAccel Image Processor),实现对JPEG转码JPEG、JPEG转码WebP(M6)等进行FPGA加速的功能,聚焦社交平台、新闻网站、电商、云相册等场景,解决了CPU做图片处理时吞吐速率低、图片处理耗时长、服务器计算资源消耗大等问题,成功地将吞吐速率提升10倍、时延降低3倍,TCO支出
计算能力一般通过两个参数表征:Peak GOPs峰值性能Real GOPs实测性能(针对特定网络)FPGA在推理过程,可以做到高的Real GOPs/Peak GOPs,而训练过程,他的结构与算法并不完全匹配。希望后面出的器件可以克服。 FPGA的算力优势推理时的低延迟,特别时batch size为1时,这个在微软Brainwave Project项目中中反复提到。GPU的优势是块处理,
当设计者试图从算法中获得最佳性能但软件方法已无计可施时,可以尝试通过硬件/软件重新划分来进行加速。FPGA易于实现软件模块和硬件模块的相互交换,且不必改变处理器或进行板级变动。本文阐述如何用FPGA来实现算法的硬件加速。 如果想从代码中获得最佳性能,方法包括优化算法、使用查找表而不是算法、将一切都转换为本地字长尺寸、使用注册变量、解开循环甚至可能采用汇编代码。如果所有这些都不奏效,可以
CNN神经网络算法刚出来的时候,就采用了FPGA作为物理机来实现,为何会率先采用FPGA作为算法加速器而非通用CPU,本文谈谈个人的理解。 首先明确FPGA与通用CPU的区别,CPU里设置流水线结构,而FPGA则是采用自定制的并行结构。就比如CPU最经典的5级流水线结构,一条指令的操作过程可以拆分为取指、译码、执行、访存、写回五个独立的子指令,通过流水线架构,使5条流水线分别执行上述5个独立指令,
转载
2023-07-26 20:52:32
140阅读
1.名词:加速比(Obscrved Speedup):并行开销(Parallel overhead):可拓展性(Scalability )2.并行编程模型:共享存储模型线程模型消息传递模型数据并行模型3.OpenCL:OpenCL(Open Computing Langugae)是一种开放运算语言,是第一个面向异构系统(系统由CPU,GPU或其它类型的处理器架构组成)的并行编程的开放式标准,可跨平
简介之前实现了基于FPGA的Winograd CNN加速器(VGG16)和基于FPGA的MobileNet v2加速器,但这两个算法在本质上区别不大:一个是VGG16,另一个是轻量级的MobileNet v2,所实现的功能都是图像分类。因此,为了尝试更多的应用,本文在FPGA上实现了一个目标检测网络----Yolov4 tiny。yolo4 tiny的结构是YOLOv4的精简版,属于轻量化模型,参
目录一、简介1.题目:2.时间:3.来源:4.简介:5.论文主要贡献:二、相关名词三、 相关背景知识1.YOLO网络2.Winograd快速卷积计算(针对3x3卷积层)3.GEMM快速卷积计算(针对1x1卷积层)4.卷积层、归一化层的合并计算四、处理流程概述1.动态量化2.针对3x3卷积层的加速计算引擎PE13.针对1x1卷积层的加速计算引擎PE2(融合了重排序计算模块)4.双缓存系统和多DMA通
文章目录一、GPU 与 CPU 简介1、GPU 与 CPU 的区别2、GPU 分类3、GPU(NVIDIA A100 ) 介绍二、CUDA 简介1、多版本 CUDA 切换2、为各种 NVIDIA 架构匹配 CUDA arch 和 gencode三、OpenCL 简介1、OpenCL 平台模型2、OpenCL 执行模型四、参考资料 一、GPU 与 CPU 简介1、GPU 与 CPU 的区别GPU
记录一下遇到几个平台里的视频编解码和图像scale的硬件加速的方法1,intel平台当包含GEN系列的集成GPU时,可用libva实现视频codec、颜色空间转换和图像scale的硬件加速,具体可使用libyami这个接口友好的封装库。加速处理过程中图像位于GPU内存,用libva的Surface表示。其在原生的linux和Android NDK环境中均可用。2,Allwinner平台可以直接使用
NVIDIA GeForce NOW 的工作原理是通过在数据中心中利用 NVENC 并将结果串流至终端客户端此 SDK 包含两个硬件加速接口:用于视频编码加速的 NVENCODE API用于视频解码加速的 NVDECODE API(旧称 NVCUVID API)NVIDIA GPU 包含一个或多个基于硬件的解码器和编码器(独立于 CUDA Core),可为几种热门的编解码器提供基于硬件的
从上代RTX 20系列开始,NVIDIA不再局限于将RTX GPU定位在游戏用途,他们看到了近年来内容创作市场的兴起,有数千万用户对用于进行创作的硬件有庞大需求。相信有很多内容创作者,也想知道新一代RTX 30系GPU,在目前多个主流创意应用中,又会有怎样的加速和提升? 新一代 AI,更少等待时间 在20系时就已经有大量主流软件享受RTX Studio的支持,比如视
先前利用了一些时间去网上搜索资料,了解Intel的集显,特别是E3800系列的SOC,主要是因为老大安排一个任务,叫我协助另一个公司的同事调查这个SOC上的硬件加速功能,即硬件解码。这个事我很早就开始耳闻了,当时还在搞项目,没空理。趁着项目处于交付阶段有点空余时间就安排我去做。手册上讲得很明白,芯片支持h.264硬件解码。从wiki上也看到集成的GPU可以实现硬解。在一番搜索研究后,终于在ubun
概述阅读完本文,你将了解 Metal 是如何在 GPU 上执行命令的。让 GPU 来执行任务是通过发送命令来实现的。 该命令可以执行绘图、并行计算或资源管理相关的操作工作。Metal 应用程序和 GPU 之间的关系是客户端-服务器模式:Metal 应用程序是客户端GPU 是服务器可以通过向 GPU 发送命令来发出请求处理完命令后,GPU 通知应用空闲状态下图为 Metal 客户端-服务器模式要将命
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、nvidia-docker2的安装1. 安装docker2. 安装nvidia-docker2(1) 添加密钥(2) 更新软件列表(3) 安装nvidia-docker2(4) 测试nvidia-docker2二、可能的报错及解决1 . 报错一(1) 原因分析(2) 解决方法总结 前言nvidia-docker2与普
目录任务介绍环境所需相关软件下载与安装C语言:不调用库的GPU加速FFT代码C语言:调用fftw库的未使用GPU的FFT代码C语言:调用cufft库的GPU加速FFTgnuplot安装画图,maltab编写的FFT运算结果对比matlab测试信号和测试时的坑 任务介绍时隔多年仍然逃不掉写C的命运……因为这个任务周期不短还踩了好多坑,必须记录一下了。 任务简单要求就是使用C语言编写一个GPU加速的
从导入到编辑与分享,Pinnacle Studio 16 让用户能够享用行业领先、经过好莱坞实践检验的立体 3D 技术。 用户可以从 GoPro 3D 摄像机等来源导入 3D 视频片段,在各种视图模式下进行编辑,添加真正的 3D 特效,借助
NVIDIA 3D Vision优化和独家的
NVIDIA® Quadro®与
G
当对一个程序进行加速的时候,很多时候需要预估出程序使用GPU加速后的加速比(比如你老板不懂GPU,或者甲方会问你预估加速比等等)。从大二接触GPU加速,到现在大概有6年时间,大大小小的项目也做了十几个,很多时候都需要事先回答加速比会有多少这个问题。这里简单的说一下自己的经验,欢迎各位大神指点。文中的经验基于目前主流的显卡,比如GTX1080,最低也得是GTX9**系列的。1.阿姆达尔定律谈加速比,
javascript如何实现gpu加速?下面本篇文章给大家介绍一下。有一定的参考价值,有需要的朋友可以参考一下,希望对大家有所帮助。一、什么是Javascript实现GPU加速?CPU与GPU设计目标不同,导致它们之间内部结构差异很大。CPU需要应对通用场景,内部结构非常复杂。而GPU往往面向数据类型统一,且相互无依赖的计算。所以,我们在Web上实现3D场景时,通常使用WebGL利用GPU运算(大
兼容的图形处理器(也称为图形卡、显卡或 GPU)可让您获得更好的 Photoshop 性能体验并利用其更多功能。此外,如果计算机的图形处理器或其驱动程序与 Photoshop 不兼容,会发生许多显示问题、性能问题、错误或崩溃。Photoshop 图形处理器 (GPU) 和图形驱动程序问题故障诊断由于图形驱动程序存在缺陷、不受支持,或者图形处理器(也称为图形卡、视频卡或 GPU)不兼容所引发的常见问
这个测试,是我自己在日常的产品对比中累积的,同样版本的软件,完全取决于CPU的性能(GPU加速仅供参考)可以看得出一个笔记本持续的一段时间内,散热、性能的发挥。方法是用格式工厂(比较low,但是很普遍、易用,其实是我只会用这么low的软件,刚和我女儿学会了快剪辑)剪同一段视频,从视频中截取10分钟,加上一张图片。新旧版本的软件,因为优化的提高,会有几个百分点的差异,我会一直用固定版本的软件。方法: