从导入到编辑与分享,Pinnacle Studio 16 让用户能够享用行业领先、经过好莱坞实践检验的立体 3D 技术。 用户可以从 GoPro 3D 摄像机等来源导入 3D 视频片段,在各种视图模式下进行编辑,添加真正的 3D 特效,借助
NVIDIA 3D Vision优化和独家的
NVIDIA® Quadro®与
G
转载
2024-03-28 10:21:16
82阅读
作者:George Seif编译:ronghuaiyang导读给大家试试GPU的威力! Numpy是Python社区的一份大礼。它允许数据科学家、机器学习使用者和统计学家以一种简单有效的方式处理矩阵格式的大量数据。即使就其本身而言,Numpy在速度方面已经比Python有了很大的提升。当你发现自己Python代码运行缓慢,尤其是如果你看到很多的for循环,使用Nump
vectorize中的参数target一共有三种取值:cpu(默认)、parallel和cuda。关于选择哪个取值,官方文档上有很好的说明:The “cpu” target works well for small data sizes (approx. less than 1KB) and low compute intensity algorithms. It has the least am
概念解析首先,我们先整理一下:平时在使用一些GPU加速算法是都是在Python环境下执行,但是一般的Python代码是没办法使用GPU加速的,因为GPU是更接近计算机底层的硬件,Python一类的高级语言是没办法直接和GPU沟通的。然后就引出话题的重点:硬件的加速必须使用硬件语言。查询Python+GPU关键字,除了TensorFlow,另外出镜率比较高的几个概念是:Numba、CUDA、PyCU
转载
2021-04-21 09:32:51
3601阅读
2评论
# 使用 Numba 在 GPU 上加速 Python 代码
在计算密集型的 Python 代码中,通常会使用 Numba 这个工具来加速运行速度。Numba 是一个用于在 Python 上实现 JIT 编译的库,可以将 Python 代码转换为机器码,提高运行效率。而对于需要处理大量数据的情况下,我们还可以使用 Numba 来进行 GPU 加速,以进一步提高运算速度。
## 什么是 GPU
原创
2024-02-27 07:23:37
103阅读
## 如何在Python中使用Numba与GPU加速
### 1. 整体流程
首先,我们来看一下整个过程的流程图:
```mermaid
flowchart TD
A(开始)
B(安装Numba)
C(编写Python代码)
D(使用Numba编译)
E(运行代码)
F(结束)
A --> B --> C --> D --> E -->
原创
2024-03-02 06:25:30
31阅读
Numba 读取装饰函数的 Python 字节码,并将其与有关函数输入参数类型的信息结合起来,
原创
2022-08-06 00:00:08
229阅读
Numba:加速python代码
当代码中有很多math计算,使用numpy或者有很多loops时,numba可以加速代码
最基础的是numba jit修饰器@jit
from numba import jit
import numpy as np
x = np.arange(100).reshape(10, 10)
@jit(nopython=True) # Set "nopython" m
原创
2021-06-10 20:37:09
1048阅读
Numpy这个库在Python编程中非常的常用,不仅在性能上补足了Python语言的一些固有缺陷,还具有无与伦比的强大生态。但是即使都是使用Python,Numpy也未必就达到了性能的巅峰,对于我们自己日常中使用到的一些计算的场景,针对性的使用CUDA的功能来进行GPU的优化,是可以达到比Numpy更高的性能的。
原创
2022-05-05 14:05:32
488阅读
Numba 简介Numba 是 Python 的一个 JIT (just-in-time) 编译器,最适用于 NumPy 数组、函数,以及 Python 循环。基本上,用法就是给原来的 Python 函数加一个修饰器,当运行到经 Numba 修饰的函数时,它会被编译为机器码,之后再调用时,就能以机器码的速度来执行了。按我上手使用的经验来看,Numba 对原代码的改动不是太大,对能加速的部分,加速效
转载
2023-11-15 15:52:01
46阅读
我把写好的markdown导入进来,但是没想到知乎的排版如此感人。如果对知乎排版不满想要看高清清爽版,请移步微信公众号原文 如何用numba加速python?同时欢迎关注前言说道现在最流行的语言,就不得不提python。可是python虽然容易上手,但速度却有点感人。如何用简单的方法让python加速到近乎可以媲美C的速度呢?今天来就来谈谈numba这个宝贝。对你没看错,不是numpy,就是num
转载
2024-02-20 07:07:19
27阅读
全局存储器,即普通的显存,整个网格中的任意线程都能读写全局存储器的任意位置。 存取延时为400-600 clock cycles 非常容易成为性能瓶颈。 访问显存时,读取和存储必须对齐,宽度为4Byte。如果没有正确的对齐,读写将被编译器拆分为多次操作,降低访存性能。合并访问的条件,1.0和1.1的设备要求较严格,1.2及更高能力的设备上放宽了合并访问的条件。 1.2及其更高能力的设
转载
2024-08-06 15:16:30
68阅读
"在深度学习中,通常会频繁地对数据进行操作。在MXNet中,NDArray是存储和变换数据的主要工具。NDArray和NumPy的多维数组非常类似。然而,NDArray提供更多的功能,例如CPU和GPU的异步计算,以及自动求导。这些都使得NDArray更加适合深度学习。"1.创建NDArrayfrom mxnet import nd
x = nd.arange(12)x结果:x = x.resh
转载
2024-05-06 20:47:43
101阅读
本文介绍了numba的两个装饰器的原理与测试案例,以及python中两坐标轴绘图的案例。其中基于即时编译技术jit的装饰器,能够对代码中的for循环产
原创
2022-05-05 14:18:23
769阅读
Python、Numba、装饰器、优化加速
原创
2023-12-06 10:04:29
48阅读
前面说过使用Cython来加速python程序的运行速度,但是相对来说程序改动较大,这次就说一种简单的方式来加速python计算速度的方法,就是使用numba库来进行,numba库可以使用JIT技术即时编译,达到高性能,另外也可以使用cuda GPU的计算能力来加速,对python来说是一个提速非常好的工具库,使用简单,但是安装稍微复杂一些,具体过程如下:安装numba需要的依赖如下:Python
转载
2023-08-21 15:44:12
69阅读
先前利用了一些时间去网上搜索资料,了解Intel的集显,特别是E3800系列的SOC,主要是因为老大安排一个任务,叫我协助另一个公司的同事调查这个SOC上的硬件加速功能,即硬件解码。这个事我很早就开始耳闻了,当时还在搞项目,没空理。趁着项目处于交付阶段有点空余时间就安排我去做。手册上讲得很明白,芯片支持h.264硬件解码。从wiki上也看到集成的GPU可以实现硬解。在一番搜索研究后,终于在ubun
转载
2024-04-23 10:50:09
331阅读
从上代RTX 20系列开始,NVIDIA不再局限于将RTX GPU定位在游戏用途,他们看到了近年来内容创作市场的兴起,有数千万用户对用于进行创作的硬件有庞大需求。相信有很多内容创作者,也想知道新一代RTX 30系GPU,在目前多个主流创意应用中,又会有怎样的加速和提升? 新一代 AI,更少等待时间 在20系时就已经有大量主流软件享受RTX Studio的支持,比如视
转载
2024-05-20 23:16:11
140阅读
记录一下遇到几个平台里的视频编解码和图像scale的硬件加速的方法1,intel平台当包含GEN系列的集成GPU时,可用libva实现视频codec、颜色空间转换和图像scale的硬件加速,具体可使用libyami这个接口友好的封装库。加速处理过程中图像位于GPU内存,用libva的Surface表示。其在原生的linux和Android NDK环境中均可用。2,Allwinner平台可以直接使用
转载
2024-04-16 15:32:23
166阅读
概述阅读完本文,你将了解 Metal 是如何在 GPU 上执行命令的。让 GPU 来执行任务是通过发送命令来实现的。 该命令可以执行绘图、并行计算或资源管理相关的操作工作。Metal 应用程序和 GPU 之间的关系是客户端-服务器模式:Metal 应用程序是客户端GPU 是服务器可以通过向 GPU 发送命令来发出请求处理完命令后,GPU 通知应用空闲状态下图为 Metal 客户端-服务器模式要将命
转载
2024-03-15 14:51:10
122阅读