# Java实现频率计算 ## 介绍 频率计算是一种用于信号处理和频率分析的数学方法。在Java中,我们可以使用快速傅里叶变换(FFT)算法来实现频率计算。本文将介绍如何在Java中使用FFT算法进行频率计算。 ## 整体流程 下表展示了整个流程的步骤: | 步骤 | 描述 | | --- | --- | | 1 | 获取输入信号 | | 2 | 对信号进行时域分析
原创 2023-11-01 15:13:39
144阅读
一、级数   核心思想:周期函数\(f(t)\)可以看成是一系列频率(周期)不同的周期函数\({f_k}(t)\)的叠加,即:\[\begin{array}{c}f(t) = {c_1}{f_1}(t) + {c_2}{f_2}(t) + \cdots + {c_n}{f_n}(t)\\ = \sum\nolimits_{k = 1}^n {{c_k}} {f_k}(t)\en
关键词:复数,欧拉公式,正弦波,复数正弦波概述傅里叶变换在科学计算、图像处理、信号等方面有着广泛的应用,也是作为一个进阶的程序员所必须要了解的。傅里叶变换听起来非常复杂,但实际上在计算机上实现和理解都非常简单。我整理出几篇笔记,以Python实现为主,不考虑太多数学公式,方便自己,也方便大家自学。注:早期的科学科学计算大多数都是MATLAB实现的,所以国内外很多课程代码都是MATLAB实现的。本着
      傅里叶变换(Transformée de Fourier)在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。         傅里叶变换能将满足一定条件的某个函数表示成三
目录 1 概念解释1.1 正弦波1.2 时域1.3 频域1.4 时域转频域2 级数(Fourier Series)2.1 频谱2.2 级数(Fourier Series)的相位谱3 傅里叶变换(Fourier Transformation)4 分析的四种形式5 系列公式推导5.1 级数的推导 (FS
       傅里叶变换是信号的一种描述方式,通过增加频域的视角,将时域复杂波形表示为简单的频率函数,获得时域不易发现的与信号有关的其他特征。       根据时间域信号x自变量的不同,可以将信号分为连续信号x(t)和离散序列x[n],根据信号周期性不同,又可以将信号分为周期性和非周期性的,所以待分析的信号类型有四种形
 前面写过关于算法的应用例子。《基于傅里叶变换的音频重采样算法 (附完整c代码)》当然也就是举个例子,主要是学习傅里叶变换。这个重采样思路还有点瑕疵,稍微改一下,就可以支持多通道,以及提升性能。当然思路很简单,就是切分,合并。留个作业哈。本文不讲过多的算法思路,傅里叶变换的各种变种,绝大多数是为提升性能,支持任意长度而作。当然各有所长,当时提到参阅整理的算法:https://git
转载 2023-12-05 21:05:30
64阅读
纯属个人理解,如有谬误,还望指正一、什么是傅里叶变换?我们曾经学习过,周期函数反映的是客观世界中的周期运动,而三角函数则是我们最常见的而且简单的一种周期函数,但是周期函数并非只有三角函数(正弦函数),那么我们该如何像对三角函数进行幂级数展开一样对其他周期函数进行简单的分析呢?这就涉及到了我们常说的谐波分析,即把一个复杂的周期运动展开成许多不同频率的简谐振动的叠加,如图,   
这份是本人的学习笔记,课程为网易公开课上的斯坦福大学公开课:傅里叶变换及其应用。 L2积分在上节课最后,引出了均方收敛,$\displaystyle{\int_0^1\left| \sum_{k=-n}^{n}\hat{f}(k)e^{2\pi ikt}-f(t)\right|^2 dt} \to 0 \ \text{if} \ n  \to \infty$均方收敛的这种分析方
转载 2015-11-21 19:49:00
159阅读
# 实现 Java 傅里叶变换 ## 1. 流程概述 实现 Java 傅里叶变换的流程如下所示: | 步骤 | 描述 | | --- | --- | | 1 | 导入所需的 Java 傅里叶变换库 | | 2 | 获取输入信号 | | 3 | 对输入信号进行傅里叶变换 | | 4 | 对傅里叶变换结果进行处理 | | 5 | 获取频域信息 | | 6 | 进行反傅里叶变换 | | 7 | 获
原创 2024-01-24 08:24:27
16阅读
目录一、级数(Fourier Series、FS)的实数域表示二、级数(Fourier Series、FS)的复数域表示三、傅里叶变换(FT)的引出四、DTFT、DFT、FFT的引出第一次认识(Fourier)是在大二那年的《信号与系统》课上,当时学这门课也不知道有啥用,听的也是一愣一愣的。。最后也仅仅是达到了期末前三天记了点公式,能考个试的水平,当初想着以后怎么也不会再接触通信
在这一章我终于知道了信号的概念——一个关于时间的函数。这个真的很重要,我一直以为信号指的就是一段波,不管在时域还是频域,亦或者是物理上的波,都可以叫信号,可能那也是一个广义的定义吧,大家都这么叫,没有问题。 当然,在得出这个结论时,并没有严格地设定好这个结论成立的条件,狄利克雷补充了这些条件,即展开需满足以下条件: 而绝大部分工程问题遇到的都是有限的问题,因此大部分
转载 2024-02-03 22:14:41
134阅读
1.理解二维傅里叶变换的定义 1.1二维傅里叶变换 1.2二维离散傅里叶变换 1.3用FFT计算二维离散傅里叶变换 1.3图像傅里叶变换的物理意义 2.二维傅里叶变换有哪些性质? 2.1二维离散傅里叶变换的性质 2.2二维离散傅里叶变换图像性质 3.任给一幅图像,对其进行二维傅里叶变换和逆变换 4.附录
  傅里叶变换主要分为连续和离散两大块。对连续时间信号的分析,从周期信号的级数(FS)展开到统一的傅里叶变换(FT),是一套完整地体系。离散时间信号的分析和连续时间信号的分析非常像,但确实是不同,没法统一地表示,主要区别在“求和”和“积分”上。FS,FT,DFS,DTFT,DFT构成了整个分析的体系。   不管是哪种变换,都满足“周期-离散”,“非周期-连续”的对应关系。这个关系
一、傅立叶变换分级的可视化找这个函数的可视化表达很久,终于在cdsn上找到这个帖子。感谢原作者的共享。 茫然的哈士奇--《python写傅里叶变换可视化》python写傅里叶变换可视化 我们可以把这看成是十重钟摆的一种特定的运动方式的二维动态的描述。 我未找到三重摆的运动可视化模型,可到网络上寻找相关动态图,以对比。笔者不清楚这里是否可以引用外网链接,所以不想自找麻烦。读者只好自己寻找一下,对比一
注:本文只是对/视频的个人笔记,侵权删 之前有看过几篇关于傅里叶变换和拉普拉斯变换的科普文。 是,这些文章讲了时域与频域的差别,讲了波叠加后的图像。但看来看去,总觉得差了点什么,我拿出书本,看着那些公式,依旧不明白其意义,不明白为什么傅里叶变换偏偏就能把一个函数变成无数正弦波的叠加,为什么要有负无穷到正无穷的积分,为什么会有乘以一个e^-jwt?为什么会用冲激
[导读] 今天来聊聊如何实现快速傅立叶变换FFT及其应用,希望大家喜欢。直接谈FFT,可能没这方面基础的同学,不太能明白,先看看它的相近较容易理解的几个概念吧。啥是傅立叶级数?在数学中,级数(Fourier series)是把类似波的函数表示成简单正弦波的方式。更正式地说法是,它能将任何周期性函数或周期信号分解成一个(可能由无穷个元素组成的)简单振荡函数的集合,即正弦函数和余弦函数(或者,等
一、用途:“任意”的函数经过一定的分解,都能够表示为正弦函数的线性组合形式。比如想要过滤一首音乐中的噪音,我们可以使用傅里叶变换将叠加后的图像分离为一个个纯声的正弦图像,去掉特定频率的噪声就能实现噪声的过滤。当然公式的应用场景很多,下面我们来通过一段图文分析公式的含义。 二、缠绕图像我们可以将叠加后的波形图绘制到缠绕图像上去,缠绕频率指“每秒几圈”,频率越低则图像越复杂,当频
一、傅里叶变换的公式傅里叶变换的公式为: 可以把傅里叶变换也成另外一种形式:可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。二、下面从公式解释下傅里叶变换的意义因为傅里叶变换的本质是内积,所以f(t)和ejwt,求内积的时候,只有f(t)中频率为ω的分量才会有内积的结果,其余分量的内积为0。可以理解为f(t
目录【实验目的】【实验设备】【实验内容】1.某系统的频响函数编辑,试画出其对数幅频特性与相频特性。编辑 2.试画出频响函数编辑 的对数幅频特性。3.已知信号为编辑,用MATLAB编程实现该信号经冲激脉冲,抽样得到的抽样信号fs(t)及其频谱。令参数E=5,τ=0.5,采用抽样间隔 4.对题3获得的抽样信号,采用截止频率为4pi的低通滤波器对其滤波后重建信号f(t),并
  • 1
  • 2
  • 3
  • 4
  • 5