今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵。 统计学的基本概念 学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合,依次给出这些概念的公式描述,这些高中学过数学的孩子都应
在机器学习中经常需要计算协方差矩阵,本科时没学过这个概念,一直对此非常头疼。现在试图通过实例的计算、图形化的表示来梳理一下什么是协方差矩阵。 A numerical example 问题: 有一组数据(如下),分别为二维向量,这四个数据对应的协方差矩阵是多少? 解答: 由于数据是二维的,所以协方差矩阵是一个2*2的矩阵矩阵的每个元素为: 元素(i,j) = (第 i 维所有元素 - 第 i
首先我们要明白,协方差实际是在概率论和统计学中用于衡量两个变量的总体误差,当然方差协方差的一种特殊情况,即当两个变量是相同情况。它表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的
协方差的定义 对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定则X表示x轴可能出现的数,Y表示y轴可能出现的。注意这里是关键,给定了4个样本,每个样
协方差矩阵在统计学与概率论中,协方差是指两个向量元素之间的相关性。设为n维随机变量 方差的定义为:当存在两个随机变量X,Y时,其各个维度偏离其均值的程度就可以用协方差来定义:在物理上的理解,你可以认为协方差是指两个向量之相互影响的程度,单从数值上来看,协方差的数值越大,表示两个变量对其均值的变化同向的程度越大。当随机变量有多个的时候,一般不再使用X,Y这样的表述,而是使用X1,X2,…X
如何求协方差矩阵一.X、Y 是两个随机变量,X、Y 的协方差 cov(X, Y) 定义为:其中: 、 二. 协方差矩阵定义矩阵中的数据按行排列与按列排列求出的协方差矩阵是不同的,这里默认数据是按行排列。即每一行是一个observation(or sample),那么每一列就是一个随机变量。协方差对角线处的元素表示的是方差,这个关系我们记住就行了。比如目前我们从之前的两个变量过渡
一、统计学的基本概念统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:均值:标准差:方差:均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],两个集合的均值都是10,但显然两个集合的差别是很
# -*- coding: utf-8 -*-"""Created on Mon Jan 8 13:54:24 2018@author: brucelau"""import numpy as tdef conv(data): ''' u = E(X) v = E(Y) Conv(X
99
原创 2018-01-08 17:14:07
86阅读
import numpy as np from sklearn import datasets # iris = datasets.load_iris() # print(iris.data.shape) # print(np.cov(iris.data,rowvar=False)) # x = np.array([2,4,5,3,6,9,40,25,32]) # print(np.cov(x)
转载 2023-05-31 11:34:45
355阅读
一、协方差矩阵的定义及其计算公式  协方差矩阵在机器学习中经常用到,查看wiki:http://zh.wikipedia.org/wiki/%E5%8D%8F%E6%96%B9%E5%B7%AE%E7%9F%A9%E9%98%B5 可知协方差矩阵的具体计算公式如下:在统计学与概率论中,协方差矩阵是一个矩阵,其每个元素是各个向量元素之间的协方差。这是从标量随机变量到高维度随机向量的自然推广。假设是以
1.协方差协方差矩阵的概念公式1.1协方差公式1.2协方差矩阵公式有数据集={X,Y,Z},是三维度的数据,即此此数据集中的样例有3个特征2.协方差的多种求解Python实现2.1代码# -*- coding: utf-8 -*- """ @author: 蔚蓝的天空Tom Talk is cheap, show me the code Aim:计算两个维度的协方差covariance """
# 计算协方差矩阵的实现方法 ## 介绍 协方差矩阵是一种常用的统计工具,用于衡量两个或多个变量之间的相关性。在Python中,我们可以使用一些库来计算协方差矩阵,例如NumPy和Pandas。本文将详细介绍通过Python编程计算协方差矩阵的步骤和代码示例。 ## 流程图 ```mermaid flowchart TD; A[导入必要的库] --> B[准备数据] B -->
原创 2023-09-09 15:46:40
411阅读
协方差是统计学中使用的一种数值,用于描述两个变量间的线性关系。两个变量的协方差越大,它们在一系列数据点范围内的取值所呈现出的趋势就越相近(换句话说,两个变量的曲线距离彼此较近)。一般来说,两组数值x和y的协方差可以用这个公式计算:1/(n -1)Σ(xi - xavg)(yi - yavg)。其中n为样本量,xi是每个x点的取值,xavg为x的平均值,yi和yavg也类似。1 使用标准方差公式 把
转载 2023-09-27 09:15:31
415阅读
本文讲的主要内容是协方差以及协方差矩阵。 在统计学中,我们见过的最基本的三个概念是均值
原创 2023-05-31 15:55:23
324阅读
参考链接:1-【机器学习】【线性代数】均值,无偏估计,总体/样本方差,样本标准差,矩阵中心化/标准化、协方差,正/不/负相关等,协方差矩阵2-数据什么时候需要做中心化和标准化处理?3-推荐引擎中的RMS和RMSE注意方差、标准差与RMS的区别,若想学习RMS请参考链接3 目录1、numpy基础2、数据保存与加载2.1使用numpy方法保存和加载数据2.2、使用pickle方法保存与加载数据2.2.
在本文中,当从单变量波动率预测跳到多变量波动率预测时,我们需要明白,现在我们不仅要预测单变量波动率元素,还要预测协方差元素。。相关视频引言假设你有两个序列,那么这个协方差元素就是2乘2方差-协方差矩阵的对角线。我们应该使用的准确术语是 "方差-协方差矩阵",因为该矩阵由对角线上的方差元素和非对角线上的协方差元素组成。但是由于读 "方差-协方差矩阵 "非常累人,所以通常被称为协方差矩阵,或者有时不太
统计学的基本概念学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合X={X1,…,Xn},依次给出这些概念的公式描述,这些高中学过数学的孩子都应该知道吧,一带而过。均值:X¯=∑ni=1Xin标准差:s=∑ni=1(Xi−X¯)2n−1−−−−−−−−−−−−−√方差
转载 2022-12-20 14:02:06
179阅读
1.n维数据之间的数学关系1. 均值未经分组的均值计算公式2. 方差均值描述的是样
原创 2022-12-28 11:39:23
917阅读
今天看论文的时候又看到了协方差矩阵这个破东西,以前看模式分类的时候就特困扰,没想到现在还是搞不清楚,索性开始查协方差矩阵的资料,恶补之后决定马上记录下来,嘿嘿~本文我将用自认为循序渐进的方式谈谈协方差矩阵。统计学的基本概念学过概率统计的孩子都知道,统计里最基本的概念就是样本的均值,方差,或者再加个标准差。首先我们给你一个含有n个样本的集合X={X1,…,Xn}X={X1,…,Xn},依次给出这些概
在opencv的Core中有一个函数是计算协方差矩阵,这个函数为:calcCovarMatrix在这里我们就来简单的介绍一些协方差
  • 1
  • 2
  • 3
  • 4
  • 5