协方差的定义
对于一般的分布,直接代入E(X)之类的就可以计算出来了,但真给你一个具体数值的分布,要计算协方差矩阵,根据这个公式来计算,还真不容易反应过来。网上值得参考的资料也不多,这里用一个例子说明协方差矩阵是怎么计算出来的吧。
记住,X、Y是一个列向量,它表示了每种情况下每个样本可能出现的数。比如给定
则X表示x轴可能出现的数,Y表示y轴可能出现的。注意这里是关键,给定了4个样本,每个样本都是二维的,所以只可能有X和Y两种维度。所以
用中文来描述,就是:
协方差(i,j)=(第i列的所有元素-第i列的均值)*(第j列的所有元素-第j列的均值)
这里只有X,Y两列,所以得到的协方差矩阵是2x2的矩阵,下面分别求出每一个元素:
所以,按照定义,给定的4个二维样本的协方差矩阵为:
用matlab计算这个例子
z=[1,2;3,6;4,2;5,2]
cov(z)
ans =
2.9167 -0.3333
-0.3333 4.0000
可以看出,matlab计算协方差过程中还将元素统一缩小了3倍。所以,协方差的matlab计算公式为:
协方差(i,j)=(第i列所有元素-第i列均值)*(第j列所有元素-第j列均值)/(样本数-1)
下面在给出一个4维3样本的实例,注意4维样本与符号X,Y就没有关系了,X,Y表示两维的,4维就直接套用计算公式,不用X,Y那么具有迷惑性的表达了。
(3)与matlab计算验证
Z=[1 2 3 4;3 4 1 2;2 3 1 4]
cov(Z)
ans =
1.0000 1.0000 -1.0000 -1.0000
1.0000 1.0000 -1.0000 -1.0000
-1.0000 -1.0000 1.3333 0.6667
-1.0000 -1.0000 0.6667 1.3333
可知该计算方法是正确的。我们还可以看出,协方差矩阵都是方阵,它的维度与样本维度有关(相等)。
a
=
-
1
1
2
-
2
3
1
4
0
3
for
i
=
1
:size(a,
2
)
for
j
=
1
:size(a,
2
)
c(i,j)
=
sum((a(:,i)
-
mean(a(:,i))).
*
(a(:,j)
-
mean(a(:,j))))
/
(size(a,
1
)
-
1
);
end
end
c =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000
c为求得的协方差矩阵,在matlab以矩阵a的每一列为变量,对应的每一行为样本。这样在矩阵a中就有3个列变量分别为a(:,1), a(:,2), a(:,3)。
在协方差矩阵c中,每一个元素c(i,j)为对第i列与第j列的协方差,例如c(1,2) = -4.1667为第一列与第二列的协方差。
拿c(1,2)的求解过程来说
c(1,2)=sum((a(:,1)-mean(a(:,1))).*(a(:,2)-mean(a(:,2))))/(size(a,1)-1);
a(:,1)-mean(a(:,1)),第一列的元素减去该列的均值得到
-1.3333
-2.3333
3.6667
2, a(:,2)-mean(a(:,2)),第二列的元素减去该列的均值得到
-0.3333
1.6667
-1.3333
3, 再将第一步与第二部的结果相乘
-1.3333 -0.3333 0.4444
-2.3333 .* 1.6667 = -3.8889
3.6667 -1.3333 -4.8889
4, 再将结果求和/size(a,1)-1 得 -4.1667,该值即为c(1,2)的值。
Cov(X,Y) = E{ [ (X-E(X) ] [ (Y-E(Y) ] } 过程基本一致呢,只是在第4步的时候matlab做了稍微的调整,自由度为n-1,减少了一行的样本值个数。