隐马尔科夫模型 文章目录隐马尔科夫模型前言一、定义二、三个基本问题1、观测序列概率2、模型参数学习3、预测(解码)问题三、三个问题的代码1、观测序列概率2、模型参数学习总结 前言隐马尔科夫模型(HMM)是在马尔科夫链上的一个扩展,属于机器学习,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析一、定义隐状态集合:Q={q1,
转载
2024-01-29 06:54:29
145阅读
车辆轨迹预测方法的优缺点总结:马尔科夫模型:优点:1、能够计算出具有维修能力和多重降级状态的系统的概率。缺点:预测准确率比较低。一阶马尔科夫模型只考虑当前轨迹点对未来轨迹点的影响,不能充分地利用历史轨迹点数据。高阶马尔科夫预测模型增加了模型计算复杂度,不适用于海量轨迹数据的训练学习。对车辆轨迹的波动比较敏感。不适宜用于系统中长期预测。马尔科夫模型是一种概率转移模型,它涉及的概率转移矩阵是能否进行准
转载
2024-01-08 11:23:47
72阅读
2021SC@SDUSC马尔可夫模型概念导入在某段时间内,交通信号灯的颜色变化序列是:红色 - 黄色 - 绿色 - 红色。在某个星期天气的变化状态序列:晴朗 - 多云 - 雨天。像交通信号灯一样,某一个状态只由前一个状态决定,这就是一个一阶马尔可夫模型。而像天气这样,天气状态间的转移仅依赖于前 n 天天气的状态,即状态间的转移仅依赖于前 n 个状态的过程。这个过程就称为n 阶马尔科夫模型。不通俗的
转载
2024-08-15 13:50:44
110阅读
灰色-马尔可夫模型在学习这个模型之前,最大的难题就是马尔可夫模型是个什么东东?同时,学习这个模型也得知道随机过程,至于什么是随机过程,可以参考如下文章,写的非常清晰易懂。如何从深刻地理解随机过程的含义?什么是随机过程?我本科以前开过一学期的随机过程的课程,当时学de还不错,疯狂啃书,但是许久不用,又还给老师了 T_T引用知乎大神的见解,内容出自马尔可夫链 (Markov Chain)是什么鬼,非常
转载
2023-11-27 21:43:18
321阅读
隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。基本理论隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相
转载
2024-02-06 19:38:40
74阅读
没课的一天,结合着师兄给的书,写一写日常学习的反思。 西瓜书到手了,还不知道怎么学,好的公式233,没有python相关代码西瓜书的学习与建模后的反思1.隐马尔科夫模型隐马尔科夫模型是关于时序的概率模型,可用于标注问题的统计学问题模型,描述由一个隐藏的马尔科夫链生成不可观测的状态序列,再有各个状态生成一个观测而产生观测随机序列的过程。马尔科夫模型:因安德烈·马尔可夫(Andrey Markov,1
转载
2023-10-26 11:20:37
145阅读
@Author:Runsen隐形马尔可夫模型,英文是 Hidden Markov Models,就是简称 HMM。既是马尔可夫模型,就一定存在马尔可夫链,该马尔可夫链服从马尔可夫性质:即无记忆性。也就是说,这一时刻的状态,受且只受前一时刻的影响,而不受更往前时刻的状态的影响。关于马尔可夫模型和隐马尔可夫模型是什么,查看知乎的问题马尔可夫模型马尔可夫链(Markov-chain,model)描述了一
转载
2023-12-12 23:02:45
113阅读
文档介绍:一、马尔可夫链1、马尔可夫链设XtXt表示随机变量XX在离散时间tt时刻的取值。若该变量随时间变化的转移概率仅仅依赖于它的当前取值,即 P(Xt+1=sj∣X0=s0,X1=s1,⋯,Xt=si)=P(Xt+1=sj∣Xt=si)P(Xt+1=sj∣X0=s0,X1=s1,⋯,Xt=si)=P(Xt+1=sj∣Xt=si) 也就是说状态转移的概率只依赖于前一个状态。称
转载
2023-09-07 20:50:46
335阅读
英文原文:Generating pseudo random text with Markov chains using Python首先看一下来自Wolfram的定义马尔可夫链是随机变量{X_t}的集合(t贯穿0,1,…),给定当前的状态,未来与过去条件独立。 Wolfram的定义更清楚一点儿…马尔可夫链是具有马尔可夫性质的随机过程…[这意味着]状态改变是概率性的,未来的状态仅仅依赖当前的状态。
转载
2023-08-28 12:53:11
127阅读
说明这个是以前写的代码,回顾一下内容1 基础理论概要1 HMM 从信号处理的角度出发2 本质上HMM本身要处理的问题类型是有更大拓展意义的(毕竟大多数信息处理都可以视为一个通信系统)3 不过处理人类决策相关的系统HMM不能直接胜任(更适合处理自然类的问题)4 Deterministic Model(确定性模型) 处理一些具体的特征5 Statistical Model(统计性模型) 只考虑信号的统
转载
2024-02-26 17:37:12
66阅读
目录一、马尔可夫性质二、马尔可夫链例子:假设认为股价有三种状态(高、中、低);三、HMM-隐马尔可夫模型四、HMM参数五、HMM的两个基本性质一、马尔可夫性质马尔科夫性质——当前的状态只和上一时刻有关,在上一时刻之前的任何状态都和我无关。我们称其符合马尔可夫性质。具体的理论化描述如下:设{X(t), t ∈ T}是一个随机过程,E为其状态空间,若对于任意的t1<t2< ...<t
转载
2024-05-10 17:50:34
24阅读
学习算法训练数据集为观测序列,此外还可能有对应的状态序列(比如人工标注),如果包含了对应的状态序列则为监督学习,否则称非监督学习。监督学习设训练数据集包含S个长度相同的观测序列和对应的状态序列{(O1,I1), (O2,I2), ... , (Os,Is)},那么可用极大似然估计法来估计隐马尔可夫模型的参数λ=(A,B,π)注:这里暂不清楚为什么要观测序列长度相同,实际上不太可能做到观测序列的长度
转载
2024-08-06 11:50:36
57阅读
马尔可夫决策过程:MDP一、MDP模型表示首先引出马尔可夫决策过程的几个相关变量集合:A={at},S={st},R={rt+1},t=1,2,...T or ∞。A表示Action,S表示State,R表示Reward,这几个均是静态的随机变量,可以是离散的,也可以是连续的。①如果变量是离散的,且只有状态变量随时间变化,则可以用“状态转移矩阵”来表示这些随机变量之间的关系(比如HMM),状态转移
转载
2023-07-22 10:13:24
158阅读
马尔可夫链简单介绍马尔可夫链是一个经典算法,马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的
转载
2023-06-19 15:30:33
212阅读
学习了李航的《统计学习方法》中隐马尔可夫模型(Hidden Markov Model, HMM),这里把自己对HMM的理解进行总结(大部分是书本原文,O(∩_∩)O哈哈~,主要是想利用python将其实现一遍,这样印象深刻一点儿),并利用python将书本上的例子运行一遍。HMM是可用于标注问题的统计学习模型,描述由隐藏的马尔科夫链随机生成观测序列的过程,属于生成模型。HMM在语音识别
转载
2023-07-24 16:08:37
123阅读
说明这块是我特别喜欢的部分,因为之前用不到,所以放下了,这次感觉可以拿起来好好用。内容1 关于隐马尔科夫模型(HMM)以下都是以前自己论文里的内容:隐马尔可夫模型(以下简称 HMM)是一种研究时间序列数据的模型。HMM 真正的发展始于上个世纪 60 年代末,直到 84 年李开复用 HMM 实现了 Splinx 语音识别系统,进而开始了 HMM 研究的狂潮。HMM 先后在语音识别,文本分 析、图像识
转载
2023-09-22 18:16:05
23阅读
为了清楚整理马尔可夫相关概念,做了下笔记,首先抛出一些概念:1 【马尔可夫性质 马尔可夫过程 马尔可夫链】概念:其未来由现在决定的程度,使得我们关于过去的知识丝毫不影响这种决定性。这种在已知“现在”的条件下,“未来”与“过去”彼此独立的特性就被称为马尔可夫性,具有这种性质的随机过程就叫做马尔可夫过程,其最原始的模型就是马尔可夫链。实例1:用一个通俗的比喻来形容,一只被切除了
转载
2024-06-03 13:18:22
116阅读
马尔科夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名。1 简介马尔科夫链即为状态空间中从一个状态到另一个状态转换的随机过程。该过程要求具备“无记忆”的性质:
转载
2024-05-20 23:51:49
104阅读
1. 马尔科夫性无后效性,下一个状态只和当前状态有关而与之前的状态无关,公式描述:P[St+1|St]=P[St+1|S1,...,St]。强化学习中的状态也服从马尔科夫性,因此才能在当前状态下执行动作并转移到下一个状态,而不需要考虑之前的状态。2. 马尔科夫过程马尔科夫过程是随机过程的一种,随机过程是对一连串随机变量(或事件)变迁或者说动态关系的描述,而马尔科夫过程就是满足马尔科夫性的随机过程,
转载
2023-11-04 21:01:24
113阅读
先介绍一下马尔科夫模型:马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域。经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具。特征:有限视野、时间不变性隐性马尔可夫模型:HMM(Hidden Markov Model), 也称隐性马尔可夫模型,是一个概率模型,用来描述一个系统隐性状态的转移和
转载
2023-07-28 16:37:01
99阅读