Hadoop生态链已经成为如今大数据实际意义上的实现。因此在Hadoop生态下建设数据仓库需要了解一些Hadoop的基本原理。这会对我们将来为什么这么设计数据仓库提供一些解答。Hadoop最基础的两块是它的分布式文件存储(HDFS)和MapReduce计算模型(MR)。通过大数据界的"Hello World"——统计一篇文章中每个单词出现的次数,这样一个案例来跟踪一下Hadoop是怎么做的。HDF
Hadoop中hdfs文件存储可以使用textfile(文本格式),也可以使用压缩格式,压缩格式的文件有 zip, gzip,lzo,snappy,bzip2。一般文件存储都会选择压缩文件,因为可以节省空间,选择压缩文件格式又要考虑三个方面,一是压缩比,压缩比越大,就越能节省空间,另一方面是压缩格式可以分割,可分割的目的是考虑mapreduce作业可以有效的利用map来读取数据,如果数据不可分割,
转载 2023-06-12 19:13:56
396阅读
# 基于Hadoop技术的数据存储 Hadoop是一个开源的分布式系统框架,能够对大规模数据进行存储和处理。通过Hadoop,我们可以构建一个可靠的、高性能的数据存储系统,用于存储海量数据。本文将介绍如何基于Hadoop技术进行数据存储,同时提供代码示例和流程图进行详细说明。 ## Hadoop数据存储流程 ```mermaid flowchart TD A(上传数据) --> B(
原创 2024-07-10 05:16:07
56阅读
我们所处的信息化时代,数据越来越多,越来越庞杂,成几何级、爆炸式地增长,并且人们对数据的的实时处理要求也高。使得传统的单服务器+盘阵的存储模式,只能满足海量数据存储,但不能满足人们对数据处理的实时性或者快速反应的高处理性需求。存储能力,又要保证高效的数据处理能力。“生态圈”让初学者很无从下手。这里所讲述的就本人在云里雾里中学习hadoop后的小结,希望能为初学hadoop的同学起到抛砖引玉的作用
    网上有很多介绍Hadoop安装部署的资料,这篇文章不会向大家介绍Hadoop的安装及部署方法,我会重点向大家介绍Hadoop实现的基本原理,这样当我们今后学习Hadoop生态相关的知识时可以快速入门。        Hadoop是什么Hadoop是一个由Apache基金会
第一部分 基础概念Google的分布式计算三驾马车:Hadoop的创始源头在于当年Google发布的3篇文章,被称为Google的分布式计算三驾马车。 Google File System(中文,英文)用来解决数据存储的问题,采用N多台廉价的电脑,使用冗余(也就是一份文件保存多份在不同的电脑之上)的方式,来取得读写速度与数据安全并存的结果。 Map-Reduce说穿了就是函数式编程,把所有的操作都
OZone背景及定位OZone是当前Apache Hadoop生态圈的一款新的对象存储系统,可用于小文件和大文件存储,设计的目的是为了填充社区在对象存储方面的不足,同时能够提供百亿甚至千亿级文件规模的存储。OZone与HDFS有着很深的关系,在设计上也对HDFS存在的不足做了很多改进,使用HDFS的生态系统可以无缝切换到OZone。OZone架构OZone无论从设计上还是实现上都从HDFS继承了很
每个文件均按块存储,每个块的元数据存储在namenode的内存中,因此hadoop存储小文件会非常低效。因为大量的小文件会耗尽namenode中的大部分内存。但注意,存储小文件所需要的磁盘容量和存储这些文件原始内容所需要的磁盘空间相比也不会增多。例如,一个1MB的文件以大小为128MB的块存储,使用的是1MB的磁盘空间,而不是128MB。 Hadoop存档文件或HAR文件,是一个更高效的文件存档工
转载 2023-06-29 23:22:12
129阅读
一、HDFS 数据读写流程HDFS 是 Hadoop 生态里面的数据存储层,它是一个具有容错性的非常可靠的分布式文件系统。HDFS 以主从( Master / Slave )架构的方式工作,Namenode 是 Master 节点上的守护进程,而 Datanode 是 Slave 节点上的守护进程。本节将详细介绍 HDFS 数据读写操作工作原理。1、Hadoop HDFS 数据写操作要把文件写入到
转载 2023-08-15 10:19:49
186阅读
传统的 Apache Hadoop架构存储和计算是耦合在一起的, HDFS作为其分布式文件系统也存在诸多不足。那么,如何实现Hadoop的存算分离,以规避HDFS的问题、降低成本、提升性能?在「数智·云原生」系列直播课的第三讲,奇点云数据平台后端架构专家纯粹带来了《云原生数据存储管理》,回顾Hadoop分布式文件系统的工作原理,解析存在的问题,并探讨Hadoop存算分离如何在DataSimba上实
转载 2023-08-15 11:35:16
0阅读
上图是一个简版的流程图,图画的不标准,但能说明问题就OK,下面是根据上图描述的写数据流程,如有不对的地方请指教。注:以下简化名称所对应的全称: NN == NameNode; IO == hdfsFileoutputStream; DN == DataNode; DN1 == DataNode1; DN2 == DataNode2; DN3 == DataNode3;详细流程 1、当需要向HDF
转载 2023-07-12 12:36:25
77阅读
Hadoop 文章目录Hadoop一、 简介二、工作原理1.HDFS原理组成介绍执行流程图2.YARN原理组成介绍执行流程图3.MapReduce原理什么是MapReduce完整工作流程图流程详细描述MapTask流程Shuffle流程Reduce Task流程总结 一、 简介Hadoop主要在分布式环境下集群机器,获取海量数据的处理能力,实现分布式集群下的大数据存储和计算。其中三大核心组件: H
转载 2023-08-04 10:58:04
170阅读
序列化存储指的是将数据结构转化为字节流的过程,一般用于数据存储或者网络传输.与之相反, 反序列化是将字节流转化为数据结果的过程.序列化是分布处理系统(比如Hadoop)的核心,原因在于他能对数据进行转化,形成一种格式.使用了这样的格式之后,数据可以有效的存储,也能通过网络连接进行传输.序列化通常与分布式系统中数据处理的两个方面紧密连接:进程间的通信(比如他远程过程调用,即Remote Pruced
摘要:SQL on Hadoop对于大数据而言非常重要。本文从技术架构和最新进展的角度分析了7种SQL on Hadoop产品的优缺点和适用范围:Hive、Tez/Stinger、Impala、Shark/Spark、Phoenix、 Hdapt/HadoopDB、Hawq/Greenplum。 编者按:大数据最大的魅力在于通过技术分析和挖掘带来新的商业价值。SQL on Hadoop
转载 2023-08-02 18:24:17
52阅读
结构化数据结构化的数据是指可以使用关系型数据库表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。举一个例子:id name age gender 1 lyh 12 male 2 liangyh 13 female 3 liang 18
海量数据存储难点 :数据量过大,数据中什么情况都可能存在;软硬件要求高,系统资源占用率高;要求很高的处理方法和技巧。 海量数据存储处理经验 : 一、选用优秀的数据库工具     现在的数据库工具厂家比较多,对海量数据的处理对所使用的数据库工具要求比较高,一般使用Oracle或者DB2,微软公司最近发布的SQL Server 2005性能也不
随着数据量的增大,存储技术出现一些问题。一、背景随着数据量的增大,存储技术出现以下问题,①硬件问题:复制数据解决(RAID)②分析需要从不同的硬盘读取数据:MapReduce而Hadoop提供了以下功能,①可靠的共享存储(分布式存储)②抽象的分析接口(分布式分析)首先简单解释一下大数据的概念,大数据实际上是不能使用一台机器进行处理的数据,大数据的核心是样本=总体。处理大数据所需要的关键技术主要包括
一、HDFS是什么  HDFS是hadoop集群中的一个分布式的我文件存储系统。他将多台集群组建成一个集群,进行海量数据的存储。为超大数据集的应用处理带来了很多便利。  和其他的分布式文件存储系统相比他有以下优点:高容错:即在HDFS运行过程中,若其中一台机器宕机了,也无需担心数据的丢失,因为在存储的过程中进行了备份,备份数量可以选择,这个将在后面的博客说明。  成本低:即使配置条件不足的情况下,
转载 2023-07-16 22:47:42
116阅读
Hadoop中数据的存储是由HDFS负责的,HDFS是Hadoop分布式计算的存储基石,Hadoop的分布式文件系统和其他分布式文件系统有很多类似的特质。那么HDFS相比于其他的文件系统有什么特征呢?简单总结有如下的基本特征: 对于整个集群有单一的命名空间。 数据一致性。适合一次写入多次读取的模型,客户端在文件没有被成功创建之前无法看到文件存在。 文件会被分割成多个文件块,每个文件块被分配存储
转载 2023-07-12 12:36:21
170阅读
这几天阅读《hadoop实战》,初步了解了一下hadoop的核心思想,简要的比较如下:1.  hadoop是一个开源框架,可编写和运行分布式应用处理大数据,具有方便、简单、健壮性、可扩展性等优点2.  MapReduce程序的执行分为两个阶段,为mapping和reducing。每个阶段均定义为数据处理函数,分别被称为mapper和reducer。在mapping阶段,MapR
转载 2023-09-19 01:21:56
44阅读
  • 1
  • 2
  • 3
  • 4
  • 5