小波理论参照《现代信号处理教程》总结,按照自己的思路梳理而成。#理论发展过程:傅里叶变换---短时傅里叶变换--连续小波变换--离散小波变换1.傅里叶变换缺点:不能刻画时间域上信号的局部特性;对突变和非平稳信号效果刻画效果差,没有时频分析22.短时变换 在傅里叶变换的基础上提出对信号进行加窗处理,将整个时域过程分解成无数个等长的小过程,在对再对每个小过程进行傅里叶变换。 傅里叶变换时域范围(
在《浅谈 4》,我引入了卷积的概念来简要的解释了的改进方法——短时。它类似一种滑动的滤波器,只不过与我们熟知的与对空间滤波、频域滤波不同,这是一个类似时域滤波的滤波器,而我们这节要回到短时的数学表达式, 由公式 什么是卷积(Convolution)前面提到了,短时是一种类似卷积的操作,这里我将简要的提一下卷积的概念,尽管我可能在以后的文章会详细的介绍卷积的概念,不
# Python中的短时傅里叶变换(STFT)详解 短时傅里叶变换(Short-Time Fourier Transform,STFT)是一种将信号在时域和频域同时表示的方法,它在音频处理、语音识别和时频分析等领域得到了广泛应用。STFT主要通过将信号分割成短的、重叠的小段进行变换,从而得到信号的时频特性。下面,我们将通过示例代码来详细介绍STFT的实现及其应用。 ## STFT的基本原理
原创 10月前
372阅读
数字图像的傅里叶变换       通过前面的博文已经知道傅里叶变换是得到信号在频域的分布,数字图像也是一种信号,对它进行傅里叶变换得到的也是它的频谱数据。对于数字图像这种离散的信号,频率大小表示信号变化的剧烈程度或者说是信号变化的快慢。频率越大,变化越剧烈,频率越小,信号越平缓,对应到图像中,高频信号往往是图像中的边缘信号和噪声信号,而低频信号包含图像变化频
    前一段时间项目需要学习了短时傅里叶变换,今天我来总结一下现阶段对短时傅里叶变换的理解。    短时傅里叶变换是最常用的一种时频分析方法,它通过时间窗内的一段信号来表示某一时刻的信号特征。在短时傅里叶变换过程中,窗的长度决定频谱图的时间分辨率和频率分辨率,窗长越长,截取的信号越长,信号越长,傅里叶变换后频率分辨率越高,时间分辨率越差;相反,窗长越短,截
目标本文简述级数(Fourier Series),并使用Python实现简单的级数的展开。由于本人对数学不是很了解,纯粹从工科的角度出发,会用即可。有叙述不当之处请各位包涵与指正,非常感谢。意义傅里叶变换在各个领域都有很广泛的应用,一篇有趣的文章《统治世界的十大算法》中排第二名,李永乐老师的视频对傅里叶变换的评级其为掌握世界本质大门的钥匙,可见其应用的广泛程度与重要性。 如傅里叶变换在
Python版本是Python3.7.3,OpenCV版本OpenCV3.4.1,开发环境为PyCharm第14章 傅里叶变换图像处理一般分为空间域处理和频率域处理。 空间域处理是直接对图像内的像素进行处理。空间域处理主要划分为灰度变换和空间滤波两种形式。灰度变换是对图像内的单个像素进行处理,比如调节对比度和处理阈值等。空间滤波涉及图像质量的改变,例如图像平滑处理。空间域处理的计算简单方便,运算速
 前面写过关于算法的应用例子。《基于傅里叶变换的音频重采样算法 (附完整c代码)》当然也就是举个例子,主要是学习傅里叶变换。这个重采样思路还有点瑕疵,稍微改一下,就可以支持多通道,以及提升性能。当然思路很简单,就是切分,合并。留个作业哈。本文不讲过多的算法思路,傅里叶变换的各种变种,绝大多数是为提升性能,支持任意长度而作。当然各有所长,当时提到参阅整理的算法:https://git
转载 2023-12-05 21:05:30
64阅读
  傅里叶变换主要分为连续和离散两大块。对连续时间信号的分析,从周期信号的级数(FS)展开到统一的傅里叶变换(FT),是一套完整地体系。离散时间信号的分析和连续时间信号的分析非常像,但确实是不同,没法统一地表示,主要区别在“求和”和“积分”上。FS,FT,DFS,DTFT,DFT构成了整个分析的体系。   不管是哪种变换,都满足“周期-离散”,“非周期-连续”的对应关系。这个关系
1.理解二维傅里叶变换的定义 1.1二维傅里叶变换 1.2二维离散傅里叶变换 1.3用FFT计算二维离散傅里叶变换 1.3图像傅里叶变换的物理意义 2.二维傅里叶变换有哪些性质? 2.1二维离散傅里叶变换的性质 2.2二维离散傅里叶变换图像性质 3.任给一幅图像,对其进行二维傅里叶变换和逆变换 4.附录
文章目录一、短时傅里叶变换(Short-Time Fourier Transform,STFT)1. 基本思想2. 定义3. 短时傅里叶变换的完全重构条件4. 离散形式二、MATLAB实现1. 编写程序绘制时频图2. 调用函数绘制时频图2.1 `spectrogram`2.2 `stft`三、窗口长度与分辨率四、短时傅里叶变换的局限性 一、短时傅里叶变换(Short-Time Fourier T
短时傅里叶变换的概念背景: 傅里叶变换的局限性:在做傅里叶变换的时候,使用的是(-∞,∞)的时间信息来计算单个频率的频谱,所以里叶变换是一种全局性的描述,不能反映信号局部区域的信息,故如果信号在某一段时间内发生错误,则进行分析时就会出错。短时变换的思想: 把非平稳过程看成是一系列短时平稳信号的叠加,短时性可通过在时间上加窗实现。(即利用一个窗函数,从时间轴的最左端开始向右滑动,每一次
目录一、引言二、级数1. 级数的定义2. 级数的性质三、傅里叶变换1. 傅里叶变换的定义2. 傅里叶变换的性质四、离散傅里叶变换1. 离散傅里叶变换的定义2. 离散傅里叶变换的性质五、应用实例1. 信号处理2. 图像处理六、总结一、引言傅里叶变换是一种重要的数学工具,它可以将一个信号分解成不同频率的正弦和余弦波的叠加。傅里叶变换在信号处理、图像处理、通信等领域有着广泛的应用。本文
# 用Java绘制短时时频图 短时傅里叶变换(STFT)是信号处理中的一个重要工具,广泛应用于音频分析、图像处理和许多其他领域。STFT可以帮助我们分析信号在时间和频率上的变化,从而为各种应用提供了丰富的信息。 ## 短时傅里叶变换的基本原理 短时傅里叶变换的主要思想是将信号分为多个短时间段,分别计算每个段的傅里叶变换。这样,我们就可以得到一个时频图,显示出信号的频率成分如何随时间变化
原创 2024-10-14 03:44:51
194阅读
# Python傅里叶变换实现 ## 概述 在本文中,我将向你介绍如何使用Python实现傅里叶变换。傅里叶变换是一种将时域信号转换为频域信号的方法,通过它可以将信号分解为一系列正弦和余弦函数。傅里叶变换在信号处理、图像处理等领域具有重要的应用。 ## 傅里叶变换的流程 下面是实现傅里叶变换的步骤: | 步骤 | 描述 | | --- | --- | | 1 | 导入所需的库 | | 2 |
原创 2023-10-13 09:22:06
244阅读
目录 1 概念解释1.1 正弦波1.2 时域1.3 频域1.4 时域转频域2 级数(Fourier Series)2.1 频谱2.2 级数(Fourier Series)的相位谱3 傅里叶变换(Fourier Transformation)4 分析的四种形式5 系列公式推导5.1 级数的推导 (FS
# Python中的傅里叶变换与反变换 ## 1. 简介 傅里叶变换是一种信号处理技术,可以将一个信号从时域转换到频域,而反变换则可以将频域信号转换回时域信号。在Python中,我们可以使用`numpy`库来实现这两种变换。在本文中,我将教你如何在Python中实现傅里叶变换和反变换。 ## 2. 流程 首先,让我们看一下实现傅里叶变换和反变换的整个流程: ```me
原创 2024-06-29 06:37:48
78阅读
目录【实验目的】【实验设备】【实验内容】1.某系统的频响函数编辑,试画出其对数幅频特性与相频特性。编辑 2.试画出频响函数编辑 的对数幅频特性。3.已知信号为编辑,用MATLAB编程实现该信号经冲激脉冲,抽样得到的抽样信号fs(t)及其频谱。令参数E=5,τ=0.5,采用抽样间隔 4.对题3获得的抽样信号,采用截止频率为4pi的低通滤波器对其滤波后重建信号f(t),并
氏级数即级数。法国数学家发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称为级数(法语:série de Fourier,或译为级数)。级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用。中文名氏级数外文名série de Fourier全 
图像滤波分为空间域滤波和频域滤波,空间滤波的内容见本人的另一篇文章: 清逸:MATLAB中的图像变换之线性空间滤波zhuanlan.zhihu.com 本文主要讲述如何在MATLAB中实现频域滤波,那么,怎么实现呢,我们这里讲的所有的滤波都是通过傅里叶变换在频域中实现的,所有这部分和傅里叶变换渊源很深,至于傅里叶变换本身,我自己也不能解释的很清楚,我们只讲他如何在matlab
  • 1
  • 2
  • 3
  • 4
  • 5