企业面临的挑战之一是:传递大数据。传递大数据受限制于IT基础设施,需要解决大数据的规模和动态性问题。与大数据有关的不同架构思想大数据技术和它的组件设计原则大数据的功能需求: 1. 采集数据 2. 组织数据 3. 集成数据 4. 分析数据 5. 按照分析结果执行操作其他需求: 1. 架构支持,强大的运算能力和速度也非常重要 2.支持海量数据的存储 3.也需要有适当的冗余,以防产生意外
目录大数据入门系列文章1.大数据入门-大数据是什么一、概念二、技术详解1.基础架构:Hadoop2.分布式文件系统:HDFS3.数据仓库:Hive4.存储引擎:Kudu5.分布式数据库:HBase6.实时框架:Flink三、其他大数据入门系列文章1.大数据入门-大数据是什么大数据入门系列文章你知道什么是大数据吗,请走传送门。1.大数据入门-大数据是什么1.大数据入门-大数据是什么一、概念大数据技术
一·大数据概述随着信息技术发展的巨大变革,企业和学术机构纷纷加大技术、资金和人员投入,加强对大数据关键技术的研发与运用。大数据的发展历程总体上划分为三个重要阶段:萌芽期、成熟期和大规模应用期。 二.大数据概念大数据的4个特点:数据量大、数据类型繁多、处理速度快和价值密度低。 三.大数据与云计算、物联网的关系大数据为云计算机提供了用武之地,云计算为大数据提供了技术基础。物联网是大
大数据技术的体系庞大且复杂,基础技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理、数据存储、数据清洗、数据查询分析和数据可视化。一、数据采集与预处理对于各种来源的数据,包括移动互联网数据、社交网络的数据等,这些结构化和非结构化的海量数据是零散
转载 2023-08-10 00:09:02
296阅读
hadoop:一个分布式系统基础架构,是一个能够对大量数据进行分布式处理的软件框架,是一个能够让用户轻松架构和使用的分布式计算平台。Hadoop 由许多元素构成。其最底部是 Hadoop Distributed File System(HDFS),它存储 Hadoop 集群中所有存储节点上的文件。HDFS(对于本文)的上一层是MapReduce 引擎,该引擎由 JobTrackers 和
转载 2023-07-24 13:28:51
125阅读
简介:本文是对大数据领域的基础论文的阅读总结,相关论文包括GFS,MapReduce、BigTable、Chubby、SMAQ。 大数据出现的原因:         大多数的技术突破来源于实际的产品需要,大数据最初诞生于谷歌的搜索引擎中。随着web2.0时代的发展,互联网上数据量呈献爆炸式的增长,为了满足信息搜索的需要,对
转载 2023-08-30 13:54:30
80阅读
我们先来看看这张图,这是某公司使用的大数据平台架构图,大部分公司应该都差不多:从这张大数据的整体架构图上看来,大数据的核心层应该是:数据采集层、数据存储与分析层、数据共享层、数据应用层,可能叫法有所不同,本质上的角色都大同小异。所以我下面就按这张架构图上的线索,慢慢来剖析一下,大数据的核心技术都包括什么。一、数据采集数据采集的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简
转载 2023-07-10 14:08:34
308阅读
大数据技术的体系庞大且复杂,基础技术包含数据的采集、数据预处理、分布式存储、NoSQL数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。通用化的大数据处理框架,主要分为下面几个方面:大数据采集与预处理、大数据存储、大数据清洗、大数据查询分析和大数据可视化。一、大数据采集大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。数据库采集:流行的有Sqoop和ET
随着科技的发展和社会的进步,大数据、人工智能等新兴技术开始进入了我们的生活。我们已经从信息时代跨入了大数据时代,而大数据是一个十分火热的技术,现如今大数据已经涉及到了各行各业的方方面面。但是目前而言,很多人对于大数据不是十分清楚,下面我们就给大家讲一讲大数据架构知识。1.大数据架构的特点一般来说,大数据架构是比较复杂的,大数据的应用开发过于偏向底层,具有学习难度大,涉及技术
大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。现在需要一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难度,提高大数据项目的开发效率。大数据在工作中的应用有三种:与业务相关,比如用户画像、风险控制等;与决策相关,数据科学的领域,了解统计学、算法,这是数据科学家的范畴;与工程相关,如何实施、如何实现、解决
转载 2023-07-07 17:46:38
227阅读
随着多年的大数据技术发展和积累,越来越多的人发现各个公司所使用的大数据技术大致可以分为两大类,分别是离线处理技术和实时处理技术,要么个别公司只有离线处理技术,要么个别公司只有实时处理技术,但是绝大部分公司基本上都是两种技术架构都带着一起在做,以为我们的业务一、lamda架构基本介绍 1、业务系统基本流程介绍 2、lamda架构基本介绍  lamda架构最早是由storm的创始人,Nat
转载 2023-08-12 15:49:35
224阅读
目录(一)通用框架概述(二)数据收集层(三)数据存储层(四)资源管理与服务协调层(五)计算引擎层(六)数据分析层(七)数据可视化层 (一)通用框架概述自底向上,与OSI类似,通用框架下的大数据体系有七层:数据源、数据收集层、数据存储层、资源管理与服务协调层、计算引擎层、数据分析层及数据可视化层。图示如下: (二)数据收集层 数据收集层直接与数据源对接,负责采集产品使用
在讲新一代大数据技术架构前,先讲下大数据特征与大数据技术要解决的问题。1.大数据特征:“大量化(Volume)、多样化(Variety)、快速化(Velocity)、价值密度低(Value)”就是“大数据”显著的4V特征,或者说,只有具备这些特点的数据,才是大数据。2.大数据技术要解决的问题:大数据技术被设计用于在成本可承受的条件下,通过非常快速(velocity)地采集、发现和分析,从大量(vo
转载 2023-08-15 15:06:21
505阅读
目录1. Hadoop生态体系2. Hadoop集群硬件架构3. Hadoop体系分层功能架构参考资料 导读: 从资源管理角度来看,当前的大数据系统架构主要有两种:一种是 MPP数据架构 ,另一种是 Hadoop体系的分层架构。这两种架构各有优势和相应的适用场景。 传统的系统已无法处理结构多变的大数据,而高性能硬件和专用服务器价格昂贵且不灵活,Hadoop因此应运而生。Hadoop使用互连的廉
数据湖的基本架构数据湖可以认为是新一代的大数据基础设施。为了更好的理解数据湖的基本架构,我们先来看看大数据基础设施架构的演进过程。1) 第一阶段:以Hadoop为代表的离线数据处理基础设施。如下图所示,Hadoop是以HDFS为核心存储,以MapReduce(简称MR)为基本计算模型的批量数据处理基础设施。围绕HDFS和MR,产生了一系列的组件,不断完善整个大数据平台的数据处理能力,例如面向在线K
什么是大数据大数据有哪些特点?大数据是指数据规模大,尤其是指由于数据形式多样性,非结构化特征明显,导致数据存储,处理和挖掘异常困难的那类数据集;特点:Volume(数据容量大,PB级以上的数据)Variety(数据类型繁多)Viscosity(价值密度低)Velocity(速度,大数据产生的速度快)Veracity(数据真实性差,大数据分析需要真实性数据)2.大数据技术概述大数据技术是指从数据
关于大数据和云计算的关系人们通常会有误解。而且也会把它们混起来说,分别做一句话直白解释就是:云计算就是硬件资源的虚拟化;大数据就是海量数据的高效处理。如果做一个更形象的解释,云计算相当于我们的计算机和操作系统,将大量的硬件资源虚拟化之后再进行分配使用;大数据则相当于海量数据的“数据库”。整体来看,未来的趋势是,云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询
云计算与大数据密切相关,大数据是计算密集型操作的对象,需要消耗巨大的存储空间,云计算的主要目标是在集中管理下使用巨大的计算和存储资源,用微粒度计算能力提供大数据应用,云计算的发展为大数据的存储和处理提供了解决方案,大数据的出现也加速了云计算的发展,基于云计算的分布式存储技术可以有效地管理大数据,借助云计算的并行计算能力可以提高大数据采集和分析的效率。研究机构Gartner定义∶大数据是需要新的处理
一、绪论 1.存储的本质 信息跨越空间的传递——通讯 信息跨越时间的传递——存储 通讯:利用具有跨越空间特性的物理现象 声音、光、电 存储:利用具有时间稳态的物理现象 物理稳态、磁稳态、半导体稳态 什么是存储? 存储: ·它是数据临时或长期驻留的物理媒介;·它是保证数据完整安全存放的方式或行为。 计 ...
转载 2021-05-14 23:35:33
1027阅读
2评论
文章目录1 分布式文件系统1.1 计算机集群结构1.2 分布式文件系统的结构2 HDFS简介3 HSFD相关概念3.1 块3.2 名称节点3.2.1 名称节点的数据结构3.2.2 FsImage文件3.2.3 名称节点的启动3.2.4 SecondaryNameNode的作用3.3 数据节点4 HDFS体系结构4.1 HDFS体系结构概述4.2 HDFS命名空间管理4.3 通信协议4.4 客户端
  • 1
  • 2
  • 3
  • 4
  • 5