分类:分类(classification),对于一个分类员来说,通常需要你告诉它“这个东西被分为某某类”,理想情况下,一个分类员会从它得到的训练集何总进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做supervised learning(监督学习)。聚类:聚类(clustering),简单的说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我们需要实现
转载
2023-09-07 21:34:26
73阅读
大数据挖掘中的分类、聚类和关联规则是三种核心算法类型,分别解决不同问题。以下是它们的核心概念、典型算法及大数据场景下的优化策略:1. 分类算法(Classification)目标:预测离散类别标签(如“是/否”、“A/B/C”)。典型场景:信用评分、垃圾邮件识别、用户流失预测。常用算法:算法特点大数据优化决策树(C4.5, CART)可解释性强,易过拟合分布式实现(Spark MLlib的Deci
大数据聚类分析是数据科学领域中的关键技术之一,它能够帮助我们从庞大而复杂的数据集中提取有意义的信息和模式。在这篇博文中,我们将深入探讨大数据聚类分析的概念、方法、应用和挑战。1. 聚类分析的基本概念1.1 什么是聚类分析?聚类分析是一种将数据分成具有相似特征的组的技术。其目标是使组内的数据点相似度最大化,而组间的相似度最小化。这有助于发现数据中的隐藏结构和模式,为进一步的分析和决策提供基础。在聚类
原创
精选
2024-02-09 14:05:23
276阅读
1. 聚类的基本概念1.1 定义聚类是数据挖掘中的概念,就是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。也即聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。1.2 聚类与分类的区别Clustering (聚类),简单地说就是把相似的东西分到一组,聚类的时候,我们并不关心某一类是什么,我
转载
2023-09-09 09:22:10
72阅读
一、几个基本概念机器学习的一种分类方法:回归,分类,聚类。从下面的图应该能够大致理解三个概念的区别:用文字描述一下:回归(regression)就是在处理连续数据,如时间序列数据时使用的技术。分类(classification)鉴别垃圾邮件就可以归类为分类问题。只有两个类别的问题称为二分类,有三个及以上的问题称为多分类,比如数字的识别就属于多分类问题。聚类(clustering)聚类与分类相似,与
转载
2024-04-12 14:12:09
1142阅读
点赞
学习记录回归、分类与聚类回归(regression)——Supervised Learning (监督学习)1.定义给定一个样本特征,希望预测其对应的属性值,如果是离散的,那么这就是一个分类问题,反之,如果是连续的实数,这就是一个回归问题。有监督学习的两大应用之一,产生连续的结果,即回归问题。有监督学习的两大应用之一,产生离散的结果,即分类问题。无论是分类问题还是回归问题,都是想建立一个预测模型,
转载
2024-06-13 10:28:01
19阅读
简单地说,分类(Categorization or Classification)就是按照某种标准给对象贴标签(label),再根据标签
原创
2023-05-10 14:33:31
362阅读
# 分类与聚类在 Python 中的实现
在数据科学中,分类与聚类是重要的任务。分类是指将数据分配到预定义的类别中,而聚类则是将数据根据其特征进行分组。在本篇文章中,我们将通过步骤化的流程来实现这两个任务,并用代码示例进行说明。
## 整体流程概览
我们可以将分类和聚类的过程分为几个步骤,如下表所示:
| 步骤 | 操作 |
原创
2024-09-01 06:32:52
31阅读
回归、分类与聚类:三大方向剖解机器学习算法的优缺点 在本教程中,作者对现代机器学习算法进行一次简要的实战梳理。虽然类似的总结有很多,但是它们都没有真正解释清楚每个算法在实践中的好坏,而这正是本篇梳理希望完成的。因此本文力图基于实践中的经验,讨论每个算法的优缺点。而机器之心也在文末给出了这些算法的具体实现细节。 对机器学习算法进行分类不是一件容易的事情,总的来看,有如下几种方式:生成与判别、参数
聚类是把一个数据集划分成多个子集的过程,每一个子集称作一个簇(Cluster),聚类使得簇内的对象具有很高的相似性,但与其他簇中的对象很不相似,由聚类分析产生的簇的集合称作一个聚类。在相同的数据集上,不同的聚类算法可能产生不同的聚类。聚类分析用于洞察数据的分布,观察每个簇的特征,进一步分析特定簇的特征。由于簇是数据对象的子集合,簇内的对象彼此相似,而与其他簇的对象不相似,因此,簇可以看作数据集的“
第二种监督学习是回归。在回归中,机器使用先前的(标记的)数据来预测未来。天气应用是回归的好例子。使用气象事件的历史数据(即平均气温、湿度和降水量),你的手机天气应用程序可以查看当前天气,并在未来的时间内对天气进行预测。 在无监督学习中,数据是无标签的。由于大多数真实世界的数据都没有标签,这些算法特别有用。无监督学习分为聚类和降维。聚类用于根据属性和行为对象进行分组。这与分类不同,因为这些
作 者 马文辉近年来,全国赛的题目中,多多少少都有些数据,而且数据量总体来说呈不断增加的趋势, 这是由于在科研界和工业界已积累了比较丰富的数据,伴随大数据概念的兴起及机器学习技术的发展, 这些数据需要转化成更有意义的知识或模型。 所以在建模比赛中, 只要数据量还比较大, 就有机器学习的用武之地。1. MATLAB机器学习概况机器学习 ( Machine Learning ) 是
转载
2024-09-23 06:15:01
69阅读
常见的聚类算法有:kmeans、fuzzy c-means、EM、hierarchical clustering、graph theoretic、self organizing map参考文章:A Review on Image Segmentation Clustering Algorithms其中LZ对Kmeans和EM比较熟悉,图论和自组织映射相关的资料比较少,主要学习下模糊C均值聚类和层次
转载
2024-05-20 10:31:47
145阅读
python实现层次聚类
层次聚类(Hierarchical Clustering)一.概念 层次聚类不需要指定聚类的数目,首先它是将数据中的每个实例看作一个类,然后将最相似的两个类合并,该过程迭代计算只到剩下一个类为止,类由两个子类构成,每个子类又由更小的两个子类构成。如下图所示:二.合并方法在聚类中每次迭代都将两个最近的类进行合并,这个类间的距离计
转载
2023-06-19 14:40:48
179阅读
聚类算法的种类:基于划分聚类算法(partition clustering)k-means: 是一种典型的划分聚类算法,它用一个聚类的中心来代表一个簇,即在迭代过程中选择的聚点不一定是聚类中的一个点,该算法只能处理数值型数据 k-modes: K-Means算法的扩展,采用简单匹配方法来度量分类型数据的相似度 k-prototypes: 结合了K-Means和K-Modes两种算法,能够处理混合型数据 k-medoids: 在迭代过程中选择簇中的某点作为聚点,...
原创
2021-05-20 22:57:31
963阅读
聚类算法有很多,不同聚类算法,特性不一样,使用场景不一样,根据算法思想可分为以下几类:1.基于划分方法k-means,k-modes, k-prototypes, k-medoids, CLARA, CLARANS,PCM2.基于层次方法chameleon, BIRCH, SBAC, ROCK,CU...
原创
2021-09-04 10:52:33
329阅读
01.根据数据集testSet2.txt,利用sklearn里的Kmeans算法完成聚类分类,并画出图形。import numpy as npfrom sklearn.cluster import KMeansimport matplotlib.pyplot as plt#载入数据
原创
2022-05-09 21:56:39
300阅读
Python 分类聚类的实现流程
在Python中,实现分类和聚类需要经历以下步骤:
1. 数据准备:收集和整理用于分类和聚类的数据。可以使用Python的Pandas库来读取和处理数据。
```python
import pandas as pd
# 读取数据
data = pd.read_csv('data.csv')
# 数据清洗和预处理
# ...
```
2. 特征选择和提取
原创
2024-02-05 04:29:57
51阅读
scikit-learn基本功能主要分为六大部分:分类、回归、聚类、数据降维、模型选择和数据预处理。1、分类 分类属于有监督学习,是给对象指定所属类别范畴的。常见的应用场景有垃圾邮件检测、图像识别。分类已实现的算法有:K最邻近算法、逻辑回归、支持向量机、随机森林和决策树等。2、回归  
K-means聚类算法思路如下:首先输入 k 的值,即我们指定希望通过聚类得到 k 个分组;从数据集中随机选取 k 个数据点作为初始质心;对集合中每一个样本点,计算与每一个初始质心的距离,离哪个初始质心距离近,就属于那个类。按距离对所有样本分完组之后,生成新的质心。重复(2)(3)(4)直到新的质心和原质心相等,算法结束。程序:import os
import random
import nump
转载
2020-06-11 17:02:45
84阅读