1、梳理概念:sp,sm,thread,block,grid,warp(1)硬件上, SP(streamingProcess),SM(streaming multiprocessor)。  SP:最基本处理单元,也称为CUDA core。CUDA Core是NVIDIA在推出全新Fermi架构后才出现一个名词。简单说,CUDACore就是以前所说流处理器,是类似的东西,只是名字
2.1 CUDA并行模式从串行到CUDA并行同时涉及硬件软件两方面。硬件转换涉及包含了多个运算单元以及运算规划和数据传输机制芯片。软件转换涉及API以及对编程语言扩展。主机:CPU内存设备:GPU显存CUDA芯片结构:CUDA引用了单指令多线程(SIMT)并行模式。CUDA GPU包含了大量基础计算单元,这些单元被称为核(core),每一个核包含了一个逻辑计算单元(ALU)一个
转载 2024-01-28 15:06:19
759阅读
CPU 架构cpu中较多晶体管用于数据缓存流程控制, 只拥有几个少数高速计算核心.Fetch/Decode: 取指令、译码单元ALU(Arithmetic Logic Unit): 算术逻辑单元Execution Context: 执行上下文池Data cache: 数据缓存流水线优化单元: 如乱序执行、分支断定预测、memory预存取等。 单核(少核)处理器发展物理约束P
显卡中CUDA是什么及作用介绍CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出运算平台。 CUDA是一种由NVIDIA推出通用并行计算架构,该架构使GPU能够解决复杂计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部并行计算引擎。   计算行业正在从只使用CPU“中央处理”向CPU与GPU并用“协同处理”发展。为打
TensorRTCUDATensorRT都是由NVIDIA开发用于加速深度学习推理工具。CUDA是NVIDIA提供一个并行计算平台编程模型,可以利用GPU并行计算能力加速各种计算任务,包括深度学习。CUDA提供了一组API工具,使得开发者可以方便地在GPU上编写高效并行代码。TensorRT是NVIDIA开发一个深度学习推理引擎,可以将训练好深度学习模型优化并加速,使得在GPU
1.CUDA是什么?  CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出运算平台,是一种通用并行计算架构,该架构使GPU能够解决复杂计算问题。说白了就是我们可以使用GPU来并行完成像神经网络、图像处理算法这些在CPU上跑起来比较吃力程序。通过GPU高并行,我们可以大大提高这些算法运行速度。2.CPU&CUDA架构  处
你会学到什么:CUDA ROCm 之间区别。每个平台优势是什么? 图形处理单元 ( GPU ) 传统上设计用于处理图形计算任务,例如图像视频处理渲染、2D 3D 图形、矢量化等。2001 年之后,随着图形处理器上可编程着色器浮点支持出现,GPU 上通用计算变得更加实用流行。值得注意是,它涉及矩阵向量问题,包括二维、三维或四维向量。这些很容
Spring核心概念与系统架构Spring设计初衷Spring是为解决企业级应用复杂性而设计,它可以做很多事。但归根到底支撑Spring仅仅是少许基本理念,而所有的这些基本理念都能追溯到一个最根本使命:简化开发。这是一个郑重承诺,其实许多框架都声称在某些方面做了简化。而Spring则立志于全方面的简化Java开发。对此,它主要采取了4个关键策略:基于POJO轻量级最小侵入性编程。通
CUDA计算单元示意图 1、计算单元:        上图是 CUDA GPU 计算单元简图。其中,SM 代表流多处理器(Stream Multiprocessors),即 CUDA 计算核心部件。每个 SM 又包括 8 个标量流处理器 SP(S
转载 2024-04-11 14:09:31
211阅读
系统CUDA与conda安装cudatoolkit关系PyTorch安装时,使用conda会安装对应版本cudatoolkit与cudnn,而系统中也安装了cuda与cudnn,系统中cuda是conda安装cudatoolkit超集 使用以下代码来查看cuda版本与路径import os import torch from torch.utils import cpp_extensio
转载 2023-11-14 07:19:31
259阅读
我们知道做深度学习离不开GPU,不过一直以来对GPUCPU差别,CUDA以及cuDNN都不是很了解,所以找了些资料整理下,希望不仅可以帮助自己理解,也能够帮助到其他人理解。先来讲讲CPUGPU关系差别吧。截图来自资料1(CUDA官方文档):  从上图可以看出GPU(图像处理器,Graphics Processing Unit)CPU(中央处理器,Central Processing
转载 2023-07-31 23:35:31
222阅读
GPU 硬件基本概念Nvidia版本:  实际上在 nVidia GPU 里,最基本处理单元是所谓 SP(Streaming Processor),而一颗 nVidia GPU 里,会有非常多 SP 可以同时做计算;而数个 SP 会在附加一些其他单元,一起组成一个 SM(Streaming Multiprocessor)。几个 SM 则会在组成所谓 TPC(Texture Pr
转载 2024-07-03 21:41:57
76阅读
没有区别
1、NVIDIA显卡驱动程序CUDA关系:NVIDIA显卡驱动程序CUDA完全是两个不同概念哦!1.1、CUDACUDA是NVIDIA推出用于自家GPU并行计算框架,也就是说CUDA只能在NVIDIAGPU上运行。只有当要解决计算问题是可以大量并行计算时候才能发挥CUDA作用。CUDA本质是一个工具包(ToolKit);但是二者是不一样。1.2、NVIDIA显卡驱动程序
CUDA学习CUDA 入门基础知识CPUCPU(Central Processing Unit)是一块超大规模集成电路,是一台计算机运算核心(Core)控制核心( Control Unit)。它功能主要是解释计算机指令以及处理计算机软件中数据。CPU与内部存储器(Memory)输入/输出(I/O)设备合称为电子计算机三大核心部件。CPU主要包括运算器(算术逻辑运算单元,ALU,Arit
大纲概述关于查看方法查看显卡型号查看驱动版本查看CUDA版本查看显卡状态更新/下载显卡驱动(如果有需要)更新/下载CUDACUDA版本选择CUDA安装安装成功检验cuDNN安装GPU版本pytorch安装GPU版本tensorflow安装 概述要想使用DGL需要基于后端,这里选择pytorch作为后端(其它比如说有tensorflow)。要想使用PyTorch可以选择GPUCPU两个版
1、CPUGPU硬件结构架构 CPU具有复杂控制硬件较少数据计算硬件,复杂控制硬件在性能上提供了CPU灵活性一个简单编程接口,但就功耗而言,这是昂贵。GPU具有简单控制硬件更多数据计算硬件,使其具有并行计算能力,这种结构使得它更节能。 一般来说任何硬件架构性能都是根据 ...
转载 2021-09-10 11:24:00
388阅读
2评论
python3之python核心数据类型(列表) ---------- python列表对象是这个语言提供最通用序列。列表是一个任意类型对象位置相关有序集合,它没有固定大小。不像字符串,其大小是可变,通过对偏移量进行赋值以及其他各种列表方法进行调用,确实能够修改列表大小。 1 序列操作 由于列表是序列一种,列表支持所有的我们对
转载 2023-11-12 20:40:07
44阅读
TOP GP Genero架构   易拓ERP开发工具-Genero ,是一个以「Write Once, Deploy Anywhere」为核心概念开发工具。   Genero核心架构如右图所示:      一、在后端执行操作系统平台上,无论选择UNIX、Linux、 Windows或Mac OS等,都可以在这
1. 一个GPU上有很多sm(stream Multiprocessor),每个sm中包括了8个sp(stream Processor)标量流处理器,商业宣传中所说数百个“核”,大多指的是sp数量。隶属于同一个smsp共用同一套取指与发射单元。CUDAkernel是以block为单位执行,一个block必须在一个sm上执行,一个sp执行一个线程,但是一个sm可以同时存在多个bloc
  • 1
  • 2
  • 3
  • 4
  • 5