# 学习使用 PyTorch 实现网络 网络是一种用于表示概率模型的图形模型,它在很多领域得到了广泛应用,如数据分析、决策支持和机器学习等。如果你是一个初学者,想学习如何在PyTorch中实现网络,这篇文章将会帮助你理解这个过程。我们将列出实现的步骤,提供代码示例,并进行详细解释。 ## 实现流程 以下是实现网络的主要步骤: | 步骤 | 描述
原创 8月前
80阅读
1. 网络网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型。它用网络结构代表领域的基本因果知识。  网络中的节点表示命题(或随机变量),认为有依赖关系(或非条件独立)的命题用箭头来连接。  令G = (I,E)表示一个有向无环图(DAG),其中I代表图形中所有的节点的集合,而E代表有向连接线段的集合,且令X = (Xi),
网络,看完这篇我终于理解了! 网络为人们提供了一种方便的框架结构来表示因果关系,这使得不确定性推理变得在逻辑上更为清晰、可理解性强。本文介绍了学派的起源以及网络相关的概念,文末附有相关代码链接。1. 对概率图模型的理解概率图模型是用图来表示变量概率依赖关系的理论,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。由图灵奖获得者Pearl开发出来。
1、网络基础首先复习一下公式例题:分别有 A、B 两个容器,在容器 A 里分别有 7 个红球和 3 个白球,在容器 B 里有 1 个红球和 9 个白球,现已知从这两个容器里任意抽出了一个球,且是红球,问这个红球是来自容器 A 的概率是多少?则有:P(红) = 8/20,P(A) = 1/2,P(红|A) = 7/10,其中P(红)表示整体上摸出红球的概率,P(A)表示选中A容器的概
网的目的是为了从已知属性推测其他未知属性的取值。网是描述属性间依赖关系的有向无环图,并使用概率分布表描述属性的联合概率分布。如下图(A指向B表示B依赖于A):网由结构G和参数Θ组成,即B=<G,Θ>。Θ定量描述了属性间的依赖关系,即Θ包含了每个属性条件概率表。我们要做的就是构建一个尽量能准确反应属性间依赖关系的图。常使用“评分搜索”。定义评分函数(稍后解释
没有最好的分类器,只有最合适的分类器数据维度越高,随机森林就比AdaBoost强越多,但是整体不及SVM[2]。数据量越大,神经网络就越强。近邻 (Nearest Neighbor)典型的例子是KNN,它的思路就是——对于待判断的点,找到离它最近的几个数据点,根据它们的类型决定待判断点的类型。它的特点是完全跟着数据走,没有数学模型可言。适用情景:需要一个特别容易解释的模型的时候。 比如需要向用户解
神经网络中,常见的超参数调优方法有:网格搜索、随机搜索、优化以及谷歌的面包烘焙算法(未开源),本篇文章主要讨论优化算法和贝叶斯定理之间的关系一、网格搜索-- 网格搜索可能是最简单、应用最广泛的超参数搜索算法,它通过查找搜索范围内的所有的点来确定最优值。二、随机搜索:-- 随机搜索的思想与网格搜索比较相似,只是不再测试上界和下界之间的所有 值,而是在搜索范围中随机选取样本点。 -- 它的
网络是一种信念网,基于有向无环图来刻画属性之间的依赖关系的一种网络结构,并使用条件概率表(CPT)来描述联合概率分布。 具体来所,一个网络B由结构G和参数 两部分构成,B=(G, θ),网络结构G是一个有向无环图,点对应每一个属性,设父节点为π,所以包含了每个属性的条件概率表为,如图所示: 结构 以结构表达了属性之间的条件独立性,给定父节点集,假设每个属性与它的非后裔属性独立,于是
分类是统计学分类方法。它们可以预测类成员关系的可能性,如给定样本属于一个特定类的概率。 贝叶斯定理是就是在给定的数据概率来表示未知的后验概率。比如已知某水果是红色的情况下,判断该水果有多大的概率是苹果,用数学符号表示就是(后验概率),其中X表示“这个水果是红色的”,H表示“这个水果是苹果...
转载 2013-11-24 16:40:00
753阅读
2评论
、原文作者:张洋说实话网络还没有完全搞懂,在这里只给大家一个简单的解释。1.1、摘要      在上一篇文章中我们讨论了朴素分类。朴素分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立)。当这个条件成立时,朴素分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件
1.理论知识1.1网络概述  网络(Bayesian Network,BN)作为一种概率图模型(Probabilistic Graphical Model,PGD),可以通过有向无环图(Directed Acyclic Graph,DAG)来表现。因为概率图模型是用图来表示变量概率依赖关系的模型,结合概率论与图论的知识,利用图来表示与模型有关的变量的联合概率分布。在处理实际问题时,如果
推断: P(A)为先验概率,即B事件发生之前,我们对A事件概率的一个判断 P(A|B)为后验概率,即在B事件发生之后,我们对A事件概率的重新评估 推断的含义:先预估一个先验概率,然后加入实验结果,看这个实验到底是增强还是削弱了先验概率,由此得到更接近事实的后验概率。朴素朴素:特征之间是相互独立分词词向量模型(1) **One_hot representation:**每个文
1、概率知识条件概率:事件A在另外一个事件B已经发生条件下的发生概率。表示:P(A|B)记作 “在B条件下A的概率”乘法定理:设P(A)>0,则有                     &n
网络定了这样一个独立的结构:一个节点的概率仅依赖于它的父节点。网络更加适用于稀疏模型,即大部分节点之间不存在任何直接的依赖关系。联合概率,即所有节点的概率,将所有条件概率相乘:我们最终的目标是计算准确的边缘概率,比如计算Hangover的概率。在数学上,边缘概率被定义为各种状态下系统所有...
转载 2015-10-22 19:14:00
456阅读
2评论
网络​说明:《数学之美》之马尔科夫链的扩展——网络笔记网络 马尔科夫链描述的是状态序列,很多时候事物之间的相互关系并不能用一条链串起来,比如研究心血管疾病和成因之间的关系便是如此错综复杂的。这个时候就要用到网络:每个状态只跟与之直接相连的状态有关,而跟与它间接相连的状态没直接关系。但是只要在这个有
PRML中,说到,概率图模型中,有向图的典型代表是网络,无向图模型的典型代表是马尔科夫随机场。 朴素其实是一种简单的网络。 Priors P(Y) and conditionals P(Xi|Y) for Naïve Bayes provide CPTs for the netwo
转载 2017-11-14 09:18:00
1072阅读
2评论
之前自己一直使用网格搜索(grid-search)来进行参数调优。显然,这种方法调优的候选集很有限,也比较“粗糙”。因此,性能往往不能达到最优。如今越来越多的超参数调优过程都是通过自动化的方法完成的,它们旨在使用带有策略的启发式搜索(informed search)在更短的时间内找到最优超参数,除了初始设置之外,并不需要额外的手动操作。优化是一种基于模型的用于寻找函数最小值的方法。近段时间以
网络的概念把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了网络网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型。是一种概率图模型,根据概率图的拓扑结构,考察一组随机变量X1,X2…XnX1,X2…Xn及其n组条件概率分布的性质。也就是说它用网络结构代表领域的基本因果知识。  网络的形式化定
网络网络(Bayesian Networks)也被称为信念网络(Belif Networks)或者因果网络(Causal Networks),是描述数据变量之间依赖关系的一种图形模式,是一种用来进行推理的模型。网络为人们提供了一种方便的框架结构来表示因果关系,这使得不确定性推理变得在逻辑上更为清晰、可理解性强。对于网络,我们可以用两种方法来看待它:首先网表达了各个节点
前面我们已经知道朴素贝叶斯分类器基于一个很强的假定,即对于给定的某个类别,各特征属性之间是相互独立的。这个假定简化了计算过程和减少了分类器的复杂度,但是其限制条件却太过苛刻。因为直观上我们知道,现实世界中各特征属性之间很有可能是相互关联的,我们不能忽略这个特征。为了对现实世界进行更好的建模以得到更加准确的分类。接下来我要讲述第四部分的内容,即网络。    &nbsp
  • 1
  • 2
  • 3
  • 4
  • 5