1. 贝叶斯决策理论
贝叶斯决策理论是解决分类问题的一种基本统计途径,其出发点是利用概率的不同分类决策,与相应决策所付出的代价进行折中,它假设决策问题可以用概率的形式描述,并且假设所有有关的概率结构均已知。
2. 各种概率及其关系
- 先验概率:
- 后验概率:
- 类条件概率:
- 贝叶斯公式:
3. 最小错误率准则
- 判别\(x\)属于\(w=\omega_i\)的错误率:
- 判别准则:
\(c\)是所有类别总数,根据该将\(x\)归为\(\omega_i\)类
- 根据贝叶斯公式,构造出判别函数,即先验概率与类条件概率的乘积。
贝叶斯公式的分母\(P(x)\),只是起到标量因子的作用,保证各类别的后验概率值的和为1。
- 我们希望判别函数\(g_j(x)\)越大越好,将\(x\)归为判别函数最大的类别。
4. 最小平均风险则
- 一共有\(c\)个类别,将\(w_i\)类的样本判别为\(w_j\)类的代价为\(\lambda_{ij}\)。
- 将未知模式\(x\)判别为\(w_j\)类的平均风险\(g_j(x)\)为:
我们希望判别函数\(g_j(x)\)越大越好,也就是相应的风险函数\(\gamma_j(x)\)越小越好。
5. 总结
- 本博客只介绍了部分贝叶斯分类器准则,关于正态分布的贝叶斯分类器没有介绍。
- 根据最小错误率准则,或最小平均风险准则,不难看出,贝叶斯分类器是生成式模型,不能构造一个区分不同类别的判别函数,而是考察待识别模式由不同类别所产生的概率,最后根据不同类别产生该模式的概率大小来决定他的类别属性。后续博客会介绍其他的判别式模型