摸索了两天,终于把等高线效果做出来了,摸索的过程也有记录的意义。下面开始。        等高线滤镜有色阶、较低、较高三个控制项,根据PS书籍记载,选择"较低"选项时将在基准亮度以下的轮廓上产生等高线,反之,在基准亮度以上的轮廓上产生等高线,这里的基准亮度就是指色阶。根据描述,可知这里进行了阈值处理,可
一、从双目立体视差图中重建三维点云 1.【视差与深度信息】2.【用VS+Opencv3.1从双目立体视差图中重建三维点云】二、斑点检测Opencv中提供了SimpleBlobDetector的特征点检测方法。 Reference:1.【 Opencv中SimpleBlobDetector的使用(斑点检测)】2.【Opencv2.4.9源码分析——SimpleBlobDetector
转载 2024-05-27 20:03:22
294阅读
图像增强是一种通过对图像进行处理以改善其质量、对比度、清晰度等方面的技术。在OpenCV中,有多种图像增强的方法和函数可用。下面简要介绍一些常见的图像增强方法及其在OpenCV中的实现方式。直方图均衡化(Histogram Equalization):直方图均衡化是一种通过调整图像的像素值分布来增强图像对比度的方法。它利用图像的像素直方图,将像素值重新映射到一个更均匀的分布上。在OpenCV中,可
1 Blinn-Phone 与 冯氏光照模型有什么区别?答:在冯氏光照模型中观察向量和反射向量夹角大于90度点积为负数,镜面分量为0,区域会出现明显断层。Blinn-phone光照模型唯一不同就是取得是观察向量和反射向量之间的半程向量,它不会大于90度。2 Gamma 校正作用及如何使用?答:电压与亮度不会是一条直线,通过乘一个gamma值校正成直线。使用法一:glEnable(GL_FRAM
画图import numpy as np import cv2 import matplotlib.pyplot as plt # 显示图片 def show(image): plt.imshow(image) plt.axis('off') plt.show() # 画直线;image:在该图像上绘制直线;(0, 0):直线起点; (300, 300):直线终点; gr
BS版图形系统 - OpenCV - 第5章笔记5 自动光学检查、对象分割和检测5.1 技术要求5.2 隔离场景中的对象5.3 为AOI创建应用程序5.4 预处理输入图像5.4.1 噪声消除5.4.2 用光模式移除背景进行分割5.4.3 阈值5.5 分割输入图像5.5.1 连通组件算法5.5.2 findContours算法5.6 总结 5 自动光学检查、对象分割和检测AOI:自动光学检查5
OpenCV入门图像图像是什么模拟图像和数字图像数字图像的表示图像的分类OpenCV简介OpenCV-PythonOpenCV部署方法pip install opencv-python==3.4.2.17测试import cv2 # 读一个图片并进行显示(图片路径需自己指定) lena=cv2.imread("1.jpg") cv2.imshow("image",lena) cv2.waitKey
一、理论          图像增强算法的基本原则是“降低低频区域,突出频区域”,以此强化边缘,达到增强的目的。最简单的例子就是通过原始图像减去高斯模糊处理后的图像,就能够将边缘强化出来。          直方图均衡化也是一种非常常见的增强方法。但是为了避免背景的干扰,更倾向于采用“局部”方
总述问题:现在手上有两幅图像,我们希望把这两副图像进行在图像的公共区域内进行拼接,该如何实现?图像拼接算法大概步骤:使用特征点检测算法计算出特征点和特征描述符; - 特征点检测算法有:sift surf orb fast lbp等 - 这些算法都同属于一个父类,并且父类的方法里有:creat()、detectAndCompute()直接调用进行图像匹配 - 图像匹配算法里有BFMatcher(暴力
 本文将对《医学成像原理》这本书里关于X-CT的知识做一个总结,内容涵盖了该领域的各个方面,以通俗易懂、图文并茂的方式带领读者深入了解这一技术。## X-CT的基本原理X-CT(X射线计算机断层摄影)是医学成像领域中一种常用的非侵入性检查技术。它的基本原理有两个:第一个是X射线能够使人体的组织、器官产生不同的衰减射线投影,从而得到不同的组织密度信息;第二个则是任何物体均可以通过其无数投影
本发明涉及图像处理领域,特别涉及到一种自动校直的图像拼接方法。背景技术::图像涉及到人们生活工作的各个领域。随着计算机相关领域的飞速发展,数字图像处理的应用价值被许多专家学者发现,其应用领域也在不断的壮大。数字图像处理作为一门富有前景的交叉性学科,吸引了很多来自其他科学领域的研究者参与其中,并在基础研究和工程实践中应用广泛。图像拼接技术是数字图像处理中不可或缺的一个关键分支,近年来,伴随着计算机视
目标在本教程中,您将学习如何:访问像素值用零初始化矩阵获取有关像素变换的一些很酷的信息在一个实际的例子中提高图像的亮度理论注意下面的解释属于Richard Szeliski 的“ 计算机视觉:算法与应用 ”一书图像处理一般的图像处理算子是采用一个或多个输入图像并产生输出图像的函数。图像变换可以看作:点运算符(像素变换)邻里(区域)运营商像素变换在这种图像处理变换中,每
目录任意角度旋转:任意方向翻转缩放加噪(两种方法)去噪(四种方法)亮度均匀与反色全程opencv+vs很多都是opencv封装的库函数拼凑一下,调调参就出了程序设计毒瘤课任意角度旋转:原理可以参考(63条消息) 经验 | OpenCV图像旋转的原理与技巧_小白学视觉的博客#include<bits/stdc++.h> #include<opencv2/opencv.hpp>
1 不同色彩空间的转换opencv 中有数百种关于不同色彩空间的转换方法,但常用的有三种色彩空间:灰度、BRG、HSV(Hue-Saturation-Value)灰度 - 灰度色彩空间是通过去除彩色信息来将其转换成灰阶,灰度色彩空间对中间处理特别有效,比如人脸检测BGR - 蓝-绿-红 彩色空间,每个像素点都由一个三元数组来表示,分别代表蓝-绿-红三种颜色。HSV,Hue 表示色调,Saturat
[size=x-large][color=blue]方法一、压暗&重新着色[/color][/size] 当皮肤很油又使用闪光灯时,很容易在面部形成区域。 下面讲一下我今天处理区域的心得: 皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。 处理思路为在保持区域纹理的情
# Python图像区域 在图像处理领域,区域通常指的是照片中明亮的部分,通常出现在光线照射强烈的地方,比如阳光直射的地方。在Python中,我们可以使用一些库来处理图像,找出图像中的区域并进行相应的处理。 ## 图像处理库 在Python中,有一些常用的图像处理库,比如PIL(Python Imaging Library)、OpenCV、matplotlib等。这些库提供了丰富
原创 2024-04-10 05:25:13
119阅读
前面曾经介绍过空间域滤波,空间域滤波就是用各种模板直接与图像进行卷积运算,实现对图像的处理,这种方法直接对图像空间操作,操作简单,所以也是空间域滤波。频域滤波说到底最终可能是和空间域滤波实现相同的功能,比如实现图像的轮廓提取,在空间域滤波中我们使用一个拉普拉斯模板就可以提取,而在频域内,我们使用一个通滤波模板(因为轮廓在频域内属于高频信号),可以实现轮廓的提取,后面也会把拉普拉斯模板频域化,会发
一、边缘检测边缘(edge)是指图像局部强度变化最显著的部分。主要存在于目标与目标、目标与背景、区域与区域(包括不同色彩)之间,是图像分割、纹理特征和形状特征等图像分析的重要基础。图像强度的显著变化可分为:阶跃变化函数,即图像强度在不连续处的两边的像素灰度值有着显著的差异;线条(屋顶)变化函数,即图像强度突然从一个值变化到另一个值,保持一较小行程后又回到原来的值。图像的边缘有方向和幅度两个属性,沿
原文代码运行时会报错,下面代码直接拷贝的原文代码,如果报错,只需将代码第21行注释。#include <opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include<opencv2/imgproc/imgproc.hpp> #include <iostream>
1.图像噪声#图像噪声 ‘’’ 由于图像采集,处理,传输,过程中不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理. 常见的图像噪声有高斯噪声,椒盐噪声等 ‘’’#椒盐噪声 ‘’’ 椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白点或者黑点, 可能是亮的区域有黑色像素,或在白色区域有黑色像素(或者两者皆有).椒盐噪声的成因可能 是影像讯号受到突如其来的强烈干扰而产生,
转载 1月前
415阅读
  • 1
  • 2
  • 3
  • 4
  • 5