呆哥解析:这是一个函数和复合函数的综合问题首先我们先把原函数的值域求出来 先直接求导: 导数不容易判断单调性,我们再继续求导: 二阶导函数我们就没必要再导下去了,这里是可以放缩的。我们先来回顾一下常用的两个放缩: 我们就对二阶导函数采取放缩,判断它的正负: 为什么这样放缩呢?这里我们来讲一下两个原则:1.指对不能留。也就是说,要
线性规划的可行解域是由一组线性约束条件形成的,从几何意义来说,就是由一些线性解面围割形成的区域。由于线性规划的目标函数也是线性的,因此,目标函数的等值域是线性区域。如果在可行解域中的某内点处目标函数达到最优值,则通过该内点的目标函数等值域与可行解域边界的交点也能达到最优解。所以,第一步的结论是:最优解必然会在可行解域的边界处达到。由于目标函数的各个等值域是平行的,而且目标函数的值将随着该等值域向某
Hesse矩阵和Jacobi矩阵注意Hesse矩阵计算过程中目标变量是一元实值,自变量是向量,经过一阶导后变成目标变量为函数矩阵,自变量为向量函数,然后函数矩阵对向量求导,见书上定义 1.3.2\[\nabla^2f(x)=\begin{pmatrix}
\frac{\partial^2f(x)}{\partial x_1^2} & \frac{\partial^2f(x)}{\parti
Hessian Matrix,它有着广泛的应用,如在牛顿方法、求极值以及边缘检测、消除边缘响应等方面的应用。一个Hessian Matrix涉及到很多数学相关的知识点,比如泰勒公式、极值判断、矩阵特征值及特征向量、二次型等。本篇文章,主要说明多元情况下的极值判定、hessian矩阵与二次型的联系以及有关hessian matrix在图像上的应用。1. 二元函数泰勒公式对于一元函数的泰勒公式,大家都
转载
2024-03-19 17:10:12
343阅读
对称阵是非常重要的矩阵,对于实对称矩阵,其特征值也为实数,且特征向量是垂直的。注意这里的垂直是指:如果特征值互不相同,那么每个特征值对应的特征向量是在一条线上,那些线之间总是垂直的;如果特征值重复,那特征值就对应一整个平面的特征向量,这是因为 ,则 ,在那个平面上,我们总可以选到垂直的向量。比如对于单位阵,它是对称阵,单位阵只有一个特征值即为1,每个向量都是其特征向量,在这些特征向量组成的平面上,
标量通俗的说就是一个数,向量可以看成行或列为1的矩阵。3者两两结合有9中方式。1 标量与标量标量与标量就是正常的以为函数求导。2 标量与向量2.1 向量对标量求导向量的每个分量对标量求导: 2.2 标量对向量求导结果为一个与向量同阶的向量,每个元素为标量对对应位置向量元素的倒数: 因为是对向量求导,这里采用分子布局(即分母不变,分子转置。分子和分母布局求出来的结果互为转置):&
在数学中,海塞矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵。求向量函数最小值时可以使用,矩阵正定是最小值存在的充分条件。经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题,尚无一般的求解方法,但判定局部极小值的方法就是用hessian矩阵:在x0点上,hessian矩阵是负定的,且各分量的一阶偏导数为0,则x0为极大值
转载
2024-03-27 22:33:46
56阅读
就像高中用二阶导数来判断一维二次函数的凹凸走向一样,Hessian矩阵不过是用来判断多维函数在某一指定点的凹凸性而已,看完这个博客想必你会立马恍然大悟,文章篇幅不大,还请耐心看完全程。1. 基础一:什么是行列式这个想必大家都懂得,以二维矩阵为例:2.基础二:特征值和特征向量矩阵最大的应用之一就是在几何变换上,比如旋转,平移,反射,以及倍数变大或变小。
举例:
可以看出,相等于把矩阵X每个元素都扩大
转载
2023-11-30 10:21:37
181阅读
本文承接上篇 https://zhuanlan.zhihu.com/p/24709748,来讲矩阵对矩阵的求导术。使用小写字母x表示标量,粗体小写字母
表示列向量,大写字母X表示矩阵。矩阵对矩阵的求导采用了向量化的思路,常应用于二阶方法求解优化问题。
首先来琢磨一下定义。矩阵对矩阵的导数,需要什么样的定义?第一,矩阵
对矩阵
的导数应包含所有mnpq个偏导
凸集与凸函数首先是凸集的定义。一个集合称为凸集(表示维实向量空间),如果对于任意两个点,连接它们的线段也在集合内,如下图: 任意多个凸集的交集仍为凸集。函数(由维实向量到实数的映射函数)为凸函数,当且仅当其定义域是凸集,且对于所有和每一个标量,满足Jensen不等式:为严格凸函数,当且仅当满足:凸函数识别的充要条件一阶充要条件为凸函数,当满足:为凸函数,当二阶充要条件为严格凸函数,当且仅当其Hes
转载
2024-10-19 09:02:11
254阅读
佚名(一)算术均数 简称均数。设观察了n个变量值X1,X2,……Xa,一般可直接用式(4.6)求样本均数X。式中∑是总和的符号,n是样本含量即例数。本书在不会引起误解的情况下简写成X=1/n∑X (4.6)例4.318-24岁非心脏疾患死亡的男子心脏重量(g)如下,求心重的均数。3503202603802702352853003002002752802903103002803003103
3.2 无约束问题的MATLAB解法3.2.1 知识准备1、Hessian阵、正定阵与负定阵黑塞矩阵(Hessian矩阵):是一个多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。黑塞矩阵常用于牛顿法解决优化问题,利用黑塞矩阵可判定多元函数的极值问题。在工程实际问题的优化设计中,为了使问题简化,常常将目标函数在某点邻域展开成泰勒多项式来逼近原函数,此时函数在某点泰勒展开式的矩阵形式中会涉及到黑
转载
2024-04-19 14:03:04
2597阅读
最近看论文,发现论文中有通过黑塞(Hessian)矩阵提高电驱系统稳定性的应用。所以本篇主要从Hessian矩阵的性质出发,对其中正定矩阵的判定所引发的想法进行记录。(其实看论文出现黑塞很惊奇,因为前不久刚读了作家黑塞的《德米安:彷徨少年时》,所以在这一领域的黑塞也做个记录吧。。)首先,我理解的Hessian矩阵是对一个多元函数求最优的方法,百度百科上这样记载的: 图1 百度
转载
2024-02-29 15:45:28
257阅读
Hessian矩阵与多元函数极值海塞矩阵(Hessian Matrix),又译作海森矩阵,是一个多元函数的二阶偏导数构成的方阵。虽然它是一个具有悠久历史的数学成果。可是在机器学习和图像处理(比如SIFT和SURF特征检測)中,我们也经常遇到它。所以本文就来向读者道一道Hessian Matrix的来龙去脉。本文的主要内容包括:多元函数极值问题泰勒展开式与Hessian矩阵多元函数极值问题回忆一下我
原创
2022-01-10 14:32:43
2522阅读
1. 从矩阵变换的角度首先半正定矩阵定义为: 其中X 是向量,M 是变换矩阵我们换一个思路看这个问题,矩阵变换中,代表对向量 X进行变换,我们假设变换后的向量为Y,记做于是半正定矩阵可以写成:这个是不是很熟悉呢? 他是两个向量的内积。 同时我们也有公式:||X||, ||Y||代表向量 X,Y的长度,是他们之间的夹角。 于是半正定矩阵意味着这下明白了么?
2. 从几何图形的角度
转载
2024-04-09 10:08:57
166阅读
海森矩阵在数学中, 海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵, 此函数如下:
f(x1,x2…,xn) 如果
f的所有二阶导数都存在, 那么f的海森矩阵即:
H(f)ij(x)=DiDjf(x) 其中
x=(x1,x2…,xn), 即
H(f)为:
⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
转载
2024-03-01 15:55:03
86阅读
定义:一个n × n的实对称矩阵M 是正定的当且仅当对于所有的非零实系数向量z,都有zTMz > 0。正定矩阵判定:1. 矩阵M的所有的特征值 λi都是正的。根据谱定理,M必然与一个实对角矩阵D相似(也就是说M = P − 1DP,其中P是幺正矩阵,或者说M在某个正交基可以表示为一个实对角矩阵)。因此,M是正定阵当且仅当相应的D的对角线上元素都是正数。2. 半双线性形式
定义了一
转载
2024-11-01 15:09:11
210阅读
综述: 1. Jacobian向量分析中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵。在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中。雅可比矩阵雅可比矩阵体现了一个可微方程与给出点的最优线性逼近,雅可比矩阵类似于多元函数的导数.。雅可比行列式如果m = n, 那么FF是从n维空间到n维空间的函数, 且它的雅可比矩阵是一个方块矩阵.
一、
旋转(
rotation
)
1、
矩阵与向量相乘
由向量内积(两个向量相乘)出发,考虑矩阵与向量相乘的情况。以二维平面空间为例,设X=(
似然函数是什么“似然”这两个字从中文看起来很难有个直观的理解。那么,在许多英文文章中被称作“likelihood”,这个单词直观的翻译过来是“(看起来)好像是”,这么一说可能就清楚一些,我们可以把似然这个词理解成好像是,可能是,那么我们就能够模糊的知道,似然函数是一种通过可能性最大化的思想来反推一些参数的函数。本质上它其实是一种概率函数,并且是在我们已经知道结果的前提(条件)下,对某种参数进行反推