计算图与动态图机制 文章目录计算图与动态图机制1. 计算图2. Pytorch的动态图 1. 计算图计算图是用来描述运算的有向无环图计算图有两个主要元素:结点(Node)和边(Edge)结点表示数据,如向量,矩阵,张量。边表示运算,如加减乘除卷积等用计算图表示:将原来的计算拆分成 采用运算法的优势是令梯度的计算更加方便,下面来看一下y对w求导的过程。 y对w求导一共包含两项内容,分别是y对a求导和
转载
2023-10-29 19:10:16
136阅读
PyTorch 图像分类 如何定义神经网络,计算损失值和网络里权重的更新。 应该怎么处理数据? 通常来说,处理图像,文本,语音或者视频数据时,可以使用标准 python 包将数据加载成 numpy 数组格式,然后将这个数组转换成 torch.Tensor • 对于图像,可以用 Pillow,OpenCV • 对于语音,可以用 scipy,librosa • 对于文本,可以直接用 Python 或
信息熵: 利用信息论中信息熵概念,求出任意一个离散信源的熵(平均自信息量)。自信息是一个随机变量,它是指某一信源发出某一消息所含有的信息量。一条信息的信息量和它的不确定性有着直接的关系。所发出的消息不同,它们所含有的信息量也就不同。任何一个消息的自信息量都代表不了信源所包含的平均自信息量。不能作为整个信源的信息测度,因此定义自信息量的数学期望为信源的平均自信息量:&nbs
转载
2023-09-08 06:59:03
471阅读
对于pytorch的内置交叉熵损失函数torch.nn.CrossEntropyLoss(),其中的具体运算公式如下图所示: 乍一看,看不懂,继续看,还是不理解?!别怕,具体带入数值进行流程解析!输出(经过softmax概率化)为x=[0.2, 0.7, 0.1],
文章目录 图片加密的评价指标—直方图统计与熵值 本篇文章对加密(置乱)后的图像进行评估,采用matlab来计算加密前后的图像直方图统计,以及图像的熵值。灰度直方图统计能反映一幅图的像素分布,或者说是亮度变化,针对加密图像来说,通过直方图统计可得到像素之间的 相关性 关系。图像熵值能反映图像的平均信息量,同时熵值越大,说明图像越混乱。根据以上,我们对FPGA实现加密后的图像进行质量评估。 1
⭕⭕ 目 录 ⭕⭕✳️ 一、引言✳️ 二、逆滤波复原理论✳️ 三、实验验证✳️ 四、Matlab程序获取与验证 ✳️ 一、引言图像复原( Image Restoration),也称图像恢复,是图像处理的一个重要方面。其目的就是尽可能地减少或去除在获取数字图像过程中发生的图像质量的下降(退化),恢复被降质图像的本来面目。因此,为了达到图像复原的目的,需要弄清降质的原因,分析引起降质的因素,建立相应
# 图像熵的计算:Python实现指南
作为一名经验丰富的开发者,我很高兴能帮助刚入行的小白们理解并实现图像熵的计算。图像熵是一个衡量图像信息复杂度的指标,它在图像压缩、图像加密和图像分析等领域有着广泛的应用。在本文中,我们将通过Python语言来实现图像熵的计算。
## 1. 准备工作
在开始之前,我们需要确保已经安装了Python环境以及一些必要的库。我们将使用`numpy`和`matp
# 使用PyTorch计算条件熵:理论与实践
在信息论中,熵是衡量随机变量不确定性的一个重要概念。而条件熵则描述在已知某个随机变量的情况下,另一个随机变量的不确定性。本文将着重介绍如何在PyTorch中计算条件熵,并附带代码示例。
## 1. 条件熵的定义
条件熵 \(H(Y|X)\) 定义为给定随机变量 \(X\) 时,随机变量 \(Y\) 的熵。公式如下:
\[
H(Y|X) = -\
entropy_image(Image : ImageEntropy : Width, Height : )功能:计算输入图像(Image)的(Width*Height )大小的区域的熵输出图像(ImageEntropy)图像的一维熵: 其中Pi表示灰度值为i的像素所占的比例,也可认为是概率。 
转载
2023-11-06 12:37:05
343阅读
利用pytorch来深入理解CELoss、BCELoss和NLLLoss之间的关系损失函数为为计算预测值与真实值之间差异的函数,损失函数越小,预测值与真实值间的差异越小,证明网络效果越好。对于神经网络而言,损失函数决定了神经网络学习的走向,至关重要。pytorch中的所有损失函数都可以通过reduction = ‘mean’或者reduction = ‘sum’来设置均值还是总值。L1 Loss
转载
2023-10-29 19:08:03
254阅读
前言opencv-python教程学习系列记录学习python-opencv过程的点滴,本文主要介绍opencv绘图函数,坚持学习,共同进步。系列教程参照OpenCV-Python中文教程;系统环境系统:win_x64;python版本:python3.5.2;opencv版本:opencv3.3.1;内容安排1.知识点介绍;2.测试代码;具体内容1.知识点介绍;主要介绍一下opencv的绘图函数
cross_entropy函数是pytorch中计算交叉熵的函数。根据源码分析,输入主要包括两部分,一个是input,是维度为(batch_size,class)的矩阵,class表示分类的数量,这个就表示模型输出的预测结果;另一个是target,是维度为(batch_size)的一维向量,表示每个样本
转载
2023-08-29 07:27:51
351阅读
首先定量的衡量两个模型之间的差异有这些:1、最小二乘法,2、极大似然估计法,3、交叉熵交叉熵主要使用了熵这个概念,将模型转换成熵这么一个数值,然后再使用这个数值去比较不同的模型之间的差异信息。为什么需要使用熵去绕这么一圈,首先要知道,比较两个模型之间的障碍有哪些,如果两个模型属于同一种类型的模型,那么只需要比较两个模型之间的参数就行了,例如都是高斯分布的话,只需要比较他们的方差和期望即可;如果两个
pytorch中多分类问题中最常用的损失函数应该就是CrossEntropyLoss了,传闻该函数结合了LogSoftmax和NLLLoss两个函数,那么这个函数到底是什么来头呢?本文来一探究竟。交叉熵的定义交叉熵刻画的是实际输出的分布与期望分布的距离:如果模型输出的结果的分布和期望的分布越相似,那么交叉熵就越小。交叉熵的定义公式为,其中表示的维度;更一般地,假设为期望分布,为输出的分布,则和的交
在pytorch当中,有两种方式可以实现交叉熵,而我们把softmax概率传入传入对数似然损失得到的损失函数叫做“交叉熵损失”在pytorch当中有两种方法实现交叉熵损失:实现方式1:criterion=nn.CrossEntropyLoss()
loss=criterion(input,target)实现方式2:#对输出值进行计算softmax,并取对数,而这个output是需要在神经网络模型的
转载
2023-06-20 17:24:04
321阅读
直方图直方图简单来说就是图像中每个像素值的个数统计,比如说一副灰度图中像素值为0的有多少个,1的有多少个……直方图是一种分析图像的手段:直方图计算opencv库计算直方图使用 cv.calcHist(images, channels, mask, histSize, ranges) 计算,其中: 参数1:要计算的原图,以方括号的形式传入,如:[img] 参数2:选择图像的某个通道,计算直方图,灰度
写在前面:要学习深度学习,就不可避免要学习Tensorflow框架。初了解Tensorflow的基础知识,看到众多API,觉得无从下手。但是到了阅读完整项目代码的阶段,通过一个完整的项目逻辑,就会让我们看到的不只是API,而是API背后,与理论研究相对应的道理。除了Tens orflow中文社区的教程,最近一周主要在阅读DCGAN的代码(Github:https://github.com/carp
对于一个二维信号,比如灰度图像,灰度值的范围是0-255,因此只要根据像素灰度值(0-255)出现的概率,就可以计算出信息熵。但是,对于一个一维信号,比如说心电信号,数据值的范围并不是确定的,不会是(0-255)这么确定,如果进行域值变换,使其转换到一个整数范围的话,就会丢失数据,请高手指点,怎么计算。比如数字信号是x(n),n=1~N(1)先用Hist函数对x(n)的赋值范围进行分块,比如赋值范
转载
2023-08-23 07:40:38
165阅读
参考链接: Python中的numpy.bitwise_and一、概述 图像的与运算主要用于获取某个图像中感兴趣的部分,是针对两个图像矩阵数组或一个数组与标量的按位与,其结果计算方法如下: 当src1和src2代表的两个图像矩阵数组的大小相同时,结果矩阵元素的值为: dst(I)=src1(I)∧src2(I) if mask(I)≠0当src1为矩阵数组而src2为标量时,结
转载
2023-10-23 17:49:20
104阅读
文章目录rl分类方法:交叉熵简要介绍交叉熵应用在CartPole中(代码内有简要说明)交叉熵方法在FrozenLake中的应用 rl分类方法:写在前面:交叉熵属于无模型和基于策略的在线策略方法 所有RL方法的分类方法: 1.无模型或基于模型:无模型表示该方法不构建环境或奖励的模型,直接将观察和动作连接起来(智能体获取当前观察结果并对其进行一些计算,计算结果就是他应该采取的动作)。基于模型的方法试