导读本文将传统图像处理中的自相似性、金字塔等思路与深度学习相结合进行视频超分,得到了SOTA指标,并为传统图像处理思路与深度学习提供了一个新的结合点。本文是港中文贾佳亚老师团队提出的一种视频超分方案,它抛弃了已有光流、形变卷积等进行帧间对齐的方式,转而采用自相似性进行帧间对齐,这无疑为传统图像处理思路与深度学习又提供了一个新的结合点;在帧内信息融合方面,该文采用多尺度自相似方案,尽管这个idea并
深度学习的许多应用中需要将提取的特征还原到原图像大小,如图像的语义分割、生成模型中的图像生成任务等。通过卷积和池化等技术可以将图像进行降维,因此,一些研究人员也想办法恢复原分辨率大小的图像,特别是在语义分割领域应用很成熟。常见的上采样方法有双线性插值、转置卷积、上采样(unsampling)、上池化(unpooling)和亚像素卷积(sub-pixel convolution,PixelShuff
转载
2024-03-19 15:48:41
431阅读
一、简介 上采样的技术是图像进行超分辨率的必要步骤,最近看到了CVPR2019有一些关于上采样的文章,所以想着把上采样的方法做一个简单的总结。 看了一些文章后,发现上采样大致被总结成了三个类别: 1、基于线性插值的上采样 2、基于深度学习的上采样(转置卷积) 3、Unpooling的方法 其实第三种只是做各种简单的补零或者扩充操
转载
2024-05-14 10:36:36
202阅读
基于多项式插值的亚像素边缘定位算法一. 背景二. 你的经历三. 代码实现(龟速版)1. 梯度幅值2. 梯度方向3. 单像素边缘4. 亚像素坐标四. 龟速测试五. 提取坐标六. 加速版1. 龟速分析2. 加速版代码七. 应用与下载 一. 背景在测量或者定位的应用中会涉及到边缘检测, 但是像 OpenCV 这样的开源库中边缘检测算法的精度在像素级别, 比如 Canny, Sobel blablabl
转载
2024-05-29 11:18:43
292阅读
Pixel-Adaptive Convolutional Neural Networks
CODE:https://suhangpro.github.io/pac/摘要卷积是cnn的基本组成部分。它们的权重在空间上是共享的,这是它们广泛使用的一个主要原因,但这也是一个主要的限制,因为它使得卷积不可知论的争论。我们提出了一种像素自适应卷积(PAC)操作,这是对标准卷积的一种简单而有效的改进,在这种操
面阵摄像机的成像面以像素为最小单位。例如某CMOS摄像芯片,其像素间距为5.2微米。摄像机拍摄时,将物理世界中连续的图像进行了离散化处理。到成像面上每一个像素点只代表其附近的颜色。至于“附近”到什么程度?就很困难解释。两个像素之间有5.2微米的距离,在宏观上可以看作是连在一起的。但是在微观上,它们之间还有无限的更小的东西存在。这个更小的东西我们称它为“亚像素”。实际上“亚像素”应该是存在的,只是硬
转载
2024-06-09 10:07:45
90阅读
亚像素处理图像处理过程中,提高检测方法的精度一般有两种方式:一种是提高图像系统的光学放大倍数和CCD相机的分辨率能力;另一种是引入亚像素细分技术来弥补硬件的不足以提高图像系统的分辨率。如使用亚像素细分技术将精度提到到0.01像素,就相当于提高了100倍的图像系统分辨率。但本文章并没有用插值方法进行操作,对像素之间进行划分,而是采取了numpy包中的resize函数,实现对图像像素点的放大,之后再进
转载
2023-10-24 10:01:45
232阅读
亚像素算法是用于在像素级别进行图像处理的算法。一种常见的亚像素算法是双线性插值算法, 它可以用于图像缩放和旋转等操作。1、亚像素算法通常用于图像处理中的插值操作,可以提高图像的精度。下面是一个简单的双线性插值的亚像素算法,你可以参考一下:#include <iostream>
using namespace std;
double bilinearInterpolation(doub
转载
2023-09-04 07:22:35
342阅读
在数字图像处理中,亚像素(Sub-pixel)指的是对像素的进一步划分或者细化,以实现更高精度的测量和计算。在图像处理中,每个像素表示一个区域内的颜色或灰度值,而亚像素则表示每个像素内部更细小的颜色或灰度值变化。通常情况下,图像的分辨率是有限的,每个像素的大小是固定的。如果需要进行更高精度的测量或计算,例如图像配准、图像插值或者运动估计等,则需要使用亚像素技术来实现更高的精度。亚像素技术可以通过对
转载
2023-09-24 22:12:51
204阅读
1 亚像素理解在相机成像的过程中,获得的图像数据是将图像进行了离散化的处理,由于感光元件本身的能力限制,到成像面上每个像素只代表附近的颜色。例如两个感官原件上的像素之间有4.5um的间距,宏观上它们是连在一起的,微观上它们之间还有无数微小的东西存在,这些存在于两个实际物理像素之间的像素,就被称为“亚像素”。亚像素实际上应该是存在的,只是缺少更小的传感器将其检测出来而已,因此只能在软件上将其近似计算
转载
2024-06-11 22:38:18
247阅读
近段时间需要用到亚像素卷积的知识,因此上网查阅了论文和资料,此文是根据网上的博文以及相关论文,依据个人的理解整理而来。总而言之,拾人牙慧而已。 Content1 亚像素的定义1.1 亚像素理解1.2 何谓亚像素?1.3 何谓亚像素精度?2 图像处理中的sub-pixel是什么意思?3 PixelShuffle参考文献 1 亚像素的定义下面的内容引自1-21.1 亚像素理解在相机成像的过程中,获得的
转载
2024-01-17 05:52:02
805阅读
第5.1节:亚像素级边缘提取&相关算子 概念:摄像机拍摄时,将物理世界中连续的图像进行了离散化处理。到成像面上每一个像素点只代表其附近的颜色。两个像素之间有5.2微米的距离,在宏观上可以看作是连在一起的。但是在微观上,之间还有无限的更小的东西存在。这个更小的东西称为“亚像素”。在两个物理像素之间还
转载
2024-01-12 02:22:11
167阅读
PC将我们带入个人计算时代,iPhone将我们带入移动计算时代,那么Vision Pro则将我们带入空间计算时代。苹果Vision pro是否能成功呢?新的发明,新的科技产品要引爆市场,离不开“想动”和“不想动”,想动就是这个产品看起来很吸引人,玩起来爱不释手,能触发人的内心欲望。“不想动”就是“懒”,几乎所有的发明本质都离不开“懒”,都是少费力,多挣钱,多挣了钱还是为了将来能懒。 苹果Visio
转载
2024-05-01 17:41:38
128阅读
的集合,排序是用来说明哪些控制点是彼此相连接的。由于轮廓提取是基于像素网格的,所以轮廓上控制点之间的距离约为一个像素。在计算机里,轮廓只是用浮点数表示的横、纵坐标构成的数组来表示的。轮廓有多种空间拓扑结构,轮廓可以是闭的或是开的,闭合轮廓通常使用同一个坐标来表示轮廓上的第一个点和最后一个点或使用一个特色属性来表示。 亚像素准确度提取边缘依赖于对图像采集设备的精心挑选,设备应满足如下条
转载
2024-01-25 19:34:04
51阅读
1 ESPCNESCPN(Efficient Sub-Pixel, 高效亚像素)同样可直接对低分辨率图像进行处理。首先介绍下亚像素的概念:面阵摄像机的成像面以像素为最小单位。在相机成像的过程中,获得的图像数据是将图像进行了离散化处理。例如两个感官元件上的像素之间有4.5um的间距,宏观上它们是连在一起的,微观上它们之间还有无数更小的东西存在,这个更小的东西就称之为“亚像素”。实际上,亚像素应该是存
转载
2024-04-07 21:33:58
798阅读
本文为中国香港理工大学(作者:WANG QUNMING)的博士论文,共205页。遥感影像是遥感应用中最广泛的影像信息提取技术之一。遥感图像中不可避免的混合像元给传统的基于硬分类的土地覆盖制图带来了很大的挑战。为了解决这一混合像素问题,已经发展了软分类(例如,光谱分解)来预测空间频率高于像素间距的土地覆盖类别比例。软分类器利用了遥感图像的光谱信息,但无法预测分类在混合像元内的空间位置。将像素分为多个
转载
2024-03-07 10:43:06
294阅读
# Python 亚像素级角点检测
随着图像处理和计算机视觉技术的发展,角点检测算法在物体识别、图像拼接和三维重建等领域得到了广泛的应用。传统的角点检测方法只能提供像素级别的准确度,但在某些应用中,需要更加精细的亚像素级别的角点检测。本文将介绍如何使用 Python 实现亚像素级角点检测,过程中将给出相关的代码示例,并通过流程图展示整个实现过程。
## 1. 何为亚像素级角点检测
亚像素级角
上文用生动的例子来解释卷积记载了卷积的含义,现在就来看看卷积在图像处理中的应用吧。(ps:本文大部分内容系转载大神的博客,现在csdn强制图片水印,实在感到很无奈!!!)数字图像处理中卷积数字图像是一个二维的离散信号,对数字图像做卷积操作其实就是利用卷积核(卷积模板)在图像上滑动,将图像点上的像素灰度值与对应的卷积核上的数值相乘,然后将所有相乘后的值相加作为卷积核中间像素对应的图像上像素的灰度值,
转载
2024-08-08 11:27:32
130阅读
角点检测可能应用于工业检测中,可以作为特征点作为后续处理的条件,也可以做图像分割,比如工件外轮廓由直线、圆弧等连接而成,可以通过角点检测把直线和圆弧分割开等。OpenCV中通过两个函数实现图像的亚像素级角点检测。1、goodFeaturesToTrack()void goodFeaturesToTrack(InputArray image, OutputArray corners, int max
转载
2024-06-05 12:45:27
231阅读
#### 亚像素
##### 什么是亚像素
在相机的成像过程中,获得的图像数据是将图像进行了离散化的处理,由于感光元件本身能力的限制,到成像面上每个像素值代表附近的颜色。例如两个感光原价之间的像素只有$4.5um$的间距,宏观上他们是连在一起的,微观上他们之间还有无数微小的颜色存在,**这些存在于两个实际物理像素之间的像素被称为亚像素**。
亚像素实际上是存在的,只是缺少更小的传感器将其检测
转载
2024-05-27 16:52:33
111阅读