一 概念1.1 定义PERT(Program Evaluation and Review Technique)即计划评审技术,最早是由美国海军在计划和控制北极星导弹的研制时发展起来的。用网络图来表达项目中各项活动的进度和它们之间的相互关系,在此基础上,进行网络分析和时间估计。该方法认为项目持续时间以及整个项目完成时间长短是随机的,服从某种概率分布,可以利用活动逻辑关系和项目持续时间的加权合计,即项
转载
2024-04-01 22:01:06
123阅读
网络可视化工具Gephi 是一款开源免费跨平台基于JVM的复杂网络分析软件,其主要用于各种网络和复杂系统,动态和分层图的交互可视化与探测开源工具。可用作:探索性数据分析,链接分析,社交网络分析,生物网络分析等。 Gephi是一个应用于各种网络、复杂系统和动态分层图的交互可视化与探索平台,支持Windows、linux和Mac等各种操作系统。Gephi
转载
2023-10-21 11:35:32
167阅读
# 如何实现“网络结构图”在Python中
在编程的世界中,网络结构图是表示网络中节点及其连接关系的重要工具。作为一名刚入行的小白,学习如何生成网络结构图将对你未来的项目大有裨益。本文将引导你通过简单的步骤实现这一目标,并提供必要的代码示例。
## 整体流程
| 步骤 | 描述 |
|--------
原创
2024-10-27 05:27:15
7阅读
# 如何实现 Docker 网络结构图
在当今的开发环境中,Docker 是一种极为重要的工具。它提供了一个轻量级的虚拟化方案,让我们可以快速搭建和管理应用程序。在本篇文章中,我将引导你制作一个 Docker 网络结构图,帮助你可视化 Docker 网络的架构。我们会通过几个简单的步骤来实现。
## 流程概述
以下是我们制作 Docker 网络结构图的基本步骤:
| 步骤 | 描述
原创
2024-10-14 03:32:13
30阅读
Transformer从整体框架来讲,Transformer其实就是encode-decode框架,即就是编码解码。只不过在编码和解码的内部比较复杂,经过了多次复杂计算。比如说,encode编码阶段,其内部整体框架如图所示。 在图上可以看出,首先输入所有的向量,然后经过多次block的计算,最终得到相同数量的输出结果向量。其中每个block内部包含一层自注意力机制、一层全连接层。同样,在
1、通信线路是构成通信网的重要组成部分,是光电信号的传输媒介,为信息提供安全畅通、稳定可靠的通路。光纤的全称是光导纤维,主要由石英玻璃制成。光纤的结构由纤芯、包层、涂覆层三部分组成。2、损耗和色散是光纤的两个主要传输特性,他们分别决定光纤通信系统的传输距离和通信容量。3、光波在光纤中传输时,随着传输距离的增加光功率逐渐减小的现象称为光纤的损耗。光纤损耗的单位是dB/km。4、测量光纤长度的仪器可以
转载
2024-10-24 07:38:19
37阅读
Darknet53网络结构图及代码实现 Darknet是最经典的一个深层网络,结合Resnet的特点在保证对特征进行超强表达的同时又避免了网络过深带来的梯度问题,主要有Darknet19和Darknet53,当然,如果你觉得这还不够深,在你条件允许的情况下你也可以延伸到99,199,999,…。1、结构图大致如下(这张图是从网上扒来的,凑合着,懒得自己画了)2、清楚结构之后,那么,这么深的网络,
转载
2023-12-09 08:48:41
409阅读
1Netscope在线链接:http://ethereon.github.io/netscopeGithub地址:https://github.com/ethereon/netscope文档链接:https://ethereon.github.io/netscope/quickstart.htmlcaffe prototxt网络结构可视化工具,2Caffe自带工具caffe源码中python/dr
转载
2023-07-18 08:55:15
158阅读
有哪些深度神经网络模型?目前经常使用的深度神经网络模型主要有卷积神经网络(CNN)、递归神经网络(RNN)、深信度网络(DBN)、深度自动编码器(AutoEncoder)和生成对抗网络(GAN)等。递归神经网络实际.上包含了两种神经网络。一种是循环神经网络(RecurrentNeuralNetwork);另一种是结构递归神经网络(RecursiveNeuralNetwork),它使用相似的网络结构
转载
2023-12-26 22:31:11
84阅读
一、背景 传统的神经网络,由于网络层数增加,会导致梯度越来越小,这样会导致后面无法有效的训练模型,这样的问题成为梯度消弭。为了解决这样的问题,引入残差神经网络(Residual Networks),残差神经网络的核心是”跳跃”+“残差块”。通过引入RN网络,可以有效缓解梯度消失的问题,可以训练更深的网络。二、残差网络的基本模型 下图是一个基本残差块。它的操作是把某层输入跳跃连接到下一层乃至更深层的
转载
2023-08-14 13:54:51
353阅读
视频效果:高斯模糊:镜头扭曲:色调:亮度对比度:视频过度:溶解:1、文件夹直接拖、项目面板双击,导入单个或者多个,或者文件夹;项目左下角,改变视图;项目右下脚,可新建文件夹管理(素材箱);导入图片时,选择是否分层,因为图片从ps编辑时,可能有多个图层;当分层导入时,会比图层数目多一个,是序列;导入序列帧:是以帧为单位的一系列图片,但是直接导入是图片,因此以序列帧格式导入,才能是视频; 导入时,选中
转载
2024-04-20 22:22:03
118阅读
自己画的啊,,感觉还行吧,大伙看看,咋样,自己设计的结构,施工,布线,配数据,终于都到位了,新办公楼已顺利使用两个月了.虽然人很累,但觉得很开心.....结构如下•公司网络分层为外网,中间层,内网三层 ⊙外网层主要是天融信光纤接入部分,提供公网环境及VPN接入网关。基于天融信设备,实现到10.253.253.0/24的转换 &nbs
原创
2008-07-25 10:38:16
1711阅读
2评论
1. 对抗网络GAN的网络结构对抗网络包含了2个子网络:生成网络(Generator,G)和判别网络(Discriminator,D),其中生成网络负责学习样本的真实分布,判别网络负责将生成网络采样的样本与真实样本区分开来。2. 对抗网络GAN的训练方法对于判别网络 D,它的目标是能够很好地分辨出真样本??与假样本??。以图片生成为例,它的目标是最小化图片的预测值和真实值之间的交叉熵损失函数:??
转载
2024-10-30 19:49:49
33阅读
@tags caffe 网络结构 可视化 当拿到一份网络定义文件 ,可以用工具画出网络结构。最快速的方法是使用 "在线工具netscope" ,粘贴内容后shift+回车就可以看结果了。 caffe也自带了网络结构绘制工具,需要稍微配置下,并确保你用的caffe版本中实现了网络中涉及到的层。以下是在
转载
2016-10-13 09:31:00
212阅读
2评论
kaldi学习笔记之卷积神经网络(CNN)摘要:本文将以switchboard为例,解读kaldi卷积神经网络部分的bash脚本。一方面便于以后自己回顾,另一方面希望能与大家互相交流。正文:在switchboard部分的训练代码中,kaldi官方并未提供相关训练的deamon,但kaldi本身支持卷积神经网络的训练,在egs/swbd/s5c/steps/nnet2中,kaldi提供了训练的CNN
转载
2024-09-24 19:16:19
55阅读
1. src/network.h(darknet中网络结构体:network)typedef struct network {
int n; // 网络总层数
int batch;//一张图像被划分成batch x batch个小方块
uint64_t *seen; // 目前已经读入的图片张数(网络已经处理的图片张数)(在make_network()中动态
PyTorch框架学习二——基本数据结构(张量)一、什么是张量?二、Tensor与Variable(PyTorch中)1.Variable2.Tensor三、Tensor的创建1.直接创建Tensor(1)torch.tensor()(2)torch.from_numpy()2.依据数值创建(1)torch.zeros()(2)torch.zeros_like()(3)torch.ones()(
论文地址:(ECCV 2016 oral) SSD: Single Shot MultiBox Detectorarxiv.org 笔者读论文的学习笔记,本人水平有限,如有错误,请指出。码字不易,如果您觉得写得不错,请点个赞,谢谢。SSD关键点:one-stage,可以end-to-end训练比YOLOv1快且精准度高,比Faster R-CNN精度略低多尺度:多个feature
转载
2023-12-12 11:31:19
116阅读
目录ML VisualNN-SVGPlotNeuralNetConvNetDrawDraw_ConvnetNetscope这些软件都是只能作为模型图的辅助,更常见的模型组合型的图还是要ppt来画了,或许还有visio。来自:ML Visual地址:GitHub - dair-ai/ml-visuals: ? ML Visuals contains figures and templates whi
转载
2024-01-24 19:59:19
180阅读
呐,作者从今年刚开始学习机器学习,深度学习这方面……写个博客希望在一起学习的朋友们可以相互交流指正……博客内容浅显,也可能存在错误,如果有bug希望大神们能批评指正。话不多说,下面开始放干货!1、神经网络的大体架构上面是一张关于vgg19的结构图,以此,为例,神经网络大致可以包括(不正经的傻瓜总结,跟书上不太一样):输入层,卷积层,池化层,激活函数,优化器,分类器,学习速率,损失函数。可能和书上的
转载
2024-04-15 13:32:06
70阅读