Description

已知\(N^2-3N+2=\sum_{d|N} f(d)\),求\(\sum_{i=1}^nf(i),n\leqslant 10^9\)

Solution

杜教筛+莫比乌斯反演...

入门题...

令\(g(n)=n^2-3n+2\)..

那么\(\sum_{i=1}^ng(n)=\sum_{i=1}^n\sum_{d\mid n} f(d)=\sum_{i=1}^niS(\lfloor\frac{n}{i}\rfloor)\)

所以\(S(n)=\sum_{i=1}^ng(n)-\sum_{i=2}^niS(\lfloor\frac{n}{i}\rfloor)\)

第一个式子可以用平方数和什么的求一下...

然后预处理\(10^6\)...

因为\(g(n)=\sum_{d\mid n}f(d)\),反演一下...

\(f(n)=\sum_{d\mid n}\mu(d)g(\frac{n}{d})\)...

欧拉筛...这样就可以\(n\log n\)预处理了...

Code

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const int N = 1000050;
const ll p = 1e9+7;

ll Pow(ll a,ll b,ll r=1) { for(;b;b>>=1,a=a*a%p) if(b&1) r=r*a%p;return r; }

ll inv2=Pow(2,p-2),inv6=Pow(6,p-2);
ll S2(ll n) { return n*(n+1)%p*(2*n+1)%p*inv6%p; }
ll S1(ll n) { return n*(n+1)%p*inv2%p; }
ll S1(ll l,ll r) { return S1(r)-S1(l-1); }
ll g(ll n) { return (n*n%p-3*n+2+p)%p; }

int cp,pr[N],b[N],mu[N];
ll f[N];

void pre(int n) {
	mu[1]=1;
	for(int i=2;i<=n;i++) {
		if(!b[i]) pr[++cp]=i,mu[i]=-1;
		for(int j=1;j<=cp && i*pr[j]<=n;j++) {
			b[i*pr[j]]=1;
			if(i%pr[j]) mu[i*pr[j]]=-mu[i];
			else break;
		}
	}
	for(int i=1;i<=n;i++) for(int j=i;j<=n;j+=i) f[j]=(f[j]+g(i)*mu[j/i]%p+p)%p;
	for(int i=1;i<=n;i++) f[i]=(f[i-1]+f[i])%p;
}
map<int,int> mp;

ll S(ll n) {
	if(n<=1000000) return f[n];
	if(mp.count(n)) return mp[n];
	ll fn=((S2(n)-3*S1(n)+2*n)%p+p)%p;
	for(int i=2,j;i<=n;i=j+1) {
		j=n/(n/i);
		fn=(fn-(j-i+1)*S(n/i)%p+p)%p;
	}return mp[n]=fn;
}
int main() {
	int T,n;
	for(pre(1000000),scanf("%d",&T);T--;) {
		scanf("%d",&n);
		printf("%lld\n",S(n));
	}
	return 0;
}