Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
这道题其实把思路都告诉你了。。。
而题目上说数据稍微大点的话会,程序运行会用很多的时间,所以这里就用一个三维dp数组来记忆结果,使程序大大地加快速度。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 using namespace std; 5 #define N 26 6 int dp[N][N][N]; 7 int dfs(int a,int b,int c) 8 { 9 //if(dp[a][b][c]!=0) return dp[a][b][c]; 10 if(a<=0 || b<=0 || c<=0) 11 return 1; 12 if(a>20 || b>20 || c>20) 13 return dfs(20,20,20); 14 if(dp[a][b][c]!=0) return dp[a][b][c]; 15 if(a<b && b<c) 16 return dp[a][b][c]=dfs(a,b,c-1)+dfs(a,b-1,c-1)-dfs(a,b-1,c); 17 else 18 return dp[a][b][c]=dfs(a-1,b,c)+dfs(a-1,b-1,c)+dfs(a-1,b,c-1)-dfs(a-1,b-1,c-1); 19 } 20 int main() 21 { 22 int a,b,c; 23 while(scanf("%d%d%d",&a,&b,&c)==3) 24 { 25 if(a==-1 && b==-1 && c==-1) 26 break; 27 memset(dp,0,sizeof(dp)); 28 int ans=dfs(a,b,c); 29 printf("w(%d, %d, %d) = %d\n",a,b,c,ans); 30 } 31 return 0; 32 }