链接:

https://vjudge.net/problem/HDU-6546

题意:

wls 有 n 个二次函数 Fi(x) = aix2 + bix + ci (1 ≤ i ≤ n).
现在他想在∑ni=1xi = m 且 x 为正整数的条件下求∑ni=1Fi(xi)的最小值。
请求出这个最小值。

思路:

优先队列维护每个函数f(x+1)-f(x)的值,每次取最小的去增加x的值。

代码:
#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
const int MAXN = 1e5+10;

struct Node
{
    int a, b, c;
    int x;
    LL sum, sub;
    bool operator < (const Node& that) const
    {
        return this->sub > that.sub;
    }
    void Update()
    {
        sum = a*x*x+b*x+c;
        sub = a*(x+1)*(x+1)+b*(x+1)+c-sum;
    }
    Node(int aa, int bb, int cc, int xx):a(aa), b(bb), c(cc),x(xx){}
};
int n, m;

int main()
{
    scanf("%d %d", &n, &m);
    int a, b, c;
    priority_queue<Node> que;
    for (int i = 1;i <= n;i++)
    {
        scanf("%d %d %d", &a, &b, &c);
        Node node(a, b, c, 1);
        node.Update();
        que.emplace(node);
    }
    LL res = 0;
    m -= n;
    while (m--)
    {
        Node now = que.top();
        que.pop();
        now.x++;
        now.Update();
        que.emplace(now);
    }
    while (!que.empty())
    {
        res += que.top().sum;
        que.pop();
    }
    printf("%lld\n", res);

    return 0;
}