找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5782    Accepted Submission(s): 4062


Problem Description
如果有x1个字母A。 x2个字母B,..... x26个字母Z。同一时候如果字母A的价值为1。字母B的价值为2,..... 字母Z的价值为26。那么,对于给定的字母。能够找到多少价值<=50的单词呢?单词的价值就是组成一个单词的全部字母的价值之和,比方,单词ACM的价值是1+3+14=18,单词HDU的价值是8+4+21=33。(组成的单词与排列顺序无关,比方ACM与CMA觉得是同一个单词)。
 

Input
输入首先是一个整数N。代表測试实例的个数。

 


然后包含N行数据,每行包含26个<=20的整数x1,x2,.....x26.

 

Output
对于每一个測试实例。请输出能找到的总价值<=50的单词数,每一个实例的输出占一行。
 

Sample Input
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 2 6 2 10 2 2 5 6 1 0 2 7 0 2 2 7 5 10 6 10 2 10 6 1 9
 

Sample Output
7 379297
 

Source

2006/1/15 ACM程序设计期末考试

 

 

知识点:

母函数(生成函数):   

    生成函数有普通型生成函数和指数型生成函数两种(本题是普通型)。

    形式上,普通型母函数用于解决多重集的组合问题,

                指数型母函数用于解决多重集的排列问题。

    母函数还能够解决递归数列的通项问题(比如使用母函数解决斐波那契数列,Catalan数的通项公式)。

 

普通母函数:

    构造母函数G(x), G(x) = a0 + a1*x + a2*HDU2082母函数模板题_属性值 + a3*HDU2082母函数模板题_母函数_02 +....+ an*HDU2082母函数模板题_#include_03。  则称G(x)是数列a0,a1…an的母函数。

    通常普通母函数用来解多重集的组合问题,其思想就是构造一个函数来解决这个问题。一般步骤例如以下:

    1.建立模型:物品n种,每种数量分别为k1,k2,..kn个,每种物品又有一个属性值p1,p2,…pn,(如本题的字母价值),

      求属性值和为m的物品组合方法数。

(若数量ki无穷 也成立。即相应以下式子中第ki项的指数一直到无穷)

    2.构造母函数:G(x)=(1+HDU2082母函数模板题_#include_04+HDU2082母函数模板题_生成函数_05HDU2082母函数模板题_生成函数_06)(1+HDU2082母函数模板题_属性值_07+HDU2082母函数模板题_#include_08+…HDU2082母函数模板题_#include_09)…(1+HDU2082母函数模板题_多重集_10+HDU2082母函数模板题_#include_11+…HDU2082母函数模板题_#include_12)        (一)

                                =a0 + a1*x + a2*HDU2082母函数模板题_属性值 + a3*HDU2082母函数模板题_母函数_02 +....+ akk*HDU2082母函数模板题_多重集_15     (设kk=k1·p1+k2·p2+…kn·pn)  (二)

                  G(x)含义: ak 为属性值和为k的组合方法数。

母函数利用的思想:

    1.把组合问题的加法法则和幂级数的乘幂相应起来。

    2.把离散数列和幂级数相应起来。把离散数列间的相互结合关系相应成为幂级数间的运算关系,最后由幂级数形式来

       确定离散数列的构造。

代码实现:

    求G(x)时一项一项累乘。先令G=1=(1+0*x+0*HDU2082母函数模板题_生成函数_16+…0*HDU2082母函数模板题_属性值_17),再令G=G*(1+HDU2082母函数模板题_#include_04+HDU2082母函数模板题_生成函数_05HDU2082母函数模板题_生成函数_06)得到形式(二)的式子…最后令G=G*(1+HDU2082母函数模板题_多重集_10+HDU2082母函数模板题_#include_11+…HDU2082母函数模板题_#include_12)。

 

 

题解:

1.建模:物品(字母)26种,每种数量x1,x2…x26。属性值为1,2,3..26,求属性值和<=50的组合方法数。

2.G(x)=(1+HDU2082母函数模板题_生成函数_24+HDU2082母函数模板题_生成函数_25HDU2082母函数模板题_#include_26)(1+HDU2082母函数模板题_生成函数_27+HDU2082母函数模板题_生成函数_28+…HDU2082母函数模板题_生成函数_29)…(1+HDU2082母函数模板题_属性值_30+…HDU2082母函数模板题_母函数_31)

#include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>


using namespace std;
int c1[100],c2[100];
int a[30];
int main()
{
    int t;
    cin >> t;
    while(t --)
    {
        for(int i = 1; i <= 26; i ++)
            cin >> a[i];
        memset(c1,0,sizeof(c1));
        memset(c2,0,sizeof(c2));
        c1[0] = 1;///初始化
        for(int i = 1; i <= 26; i ++)///相应26个多项式
        {
            for(int j = 0; j <= 50; j ++)   ///每一个多项式中相应的指数
                for(int k = 0; k <= a[i] && k * i + j <= 50; k ++)  ///k*i表示被乘多项式各项的指数
                    c2[j + k * i] += c1[j];
            memcpy(c1,c2,sizeof(c2));///c2数组的值赋值给c1
            memset(c2,0,sizeof(c2));///c2初始化
        }
        ///累加
        int sum = 0;
        for(int i = 1; i <= 50; i ++)
            sum += c1[i];
        cout << sum << endl;
    }
    return 0;
}