文章目录基于Python的数学建模基本原理熵值法步骤Python代码实现 基于Python的数学建模Github仓库:Mathematical-modeling
基本原理在信息论中,熵是对不确定性的一种度量。不确定性越大,熵就越大,包含的信息量越大;不确定性越小,熵就越小,包含的信息量就越小。根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指
转载
2023-08-26 23:06:03
110阅读
一直关注我们的朋友们一定会发现,近期SPSSAU增添了很多新功能。我们精挑细选出6个最常使用的功能,介绍给大家,看看这些新功能你有没有解锁成功呢?01 一键删除无效样本“无效样本”功能中,添加了一键删除无效样本的按钮。筛选出无效样本后,你可以直接选中【删除无效样本】按钮,一键删除无效样本。当然,这样做可能有一些风险,因为删除操作无法恢复。也就是说一定要确保筛除出的样本确实是不符合研究
熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。目前已经在工程技术、社会经济等领域得到了非常广泛的应用。 熵权法的基本思路是根据指标变异性的大小来确定客观权重。 参考数据:https://login.sina.com.cn/sso/login.php?useticket=0&returntype=META&service=blo
转载
2024-05-13 12:10:45
233阅读
【建模算法】熵权法(Python实现)熵权法是通过寻找数据本身的规律来赋权重的一种方法。熵是热力学单位,在数学中,信息熵表示事件所包含的信息量的期望。根据定义,对于某项指标,可以用熵值来判断某个指标的离散程度,其熵值越小,指标的离散程度越大,该指标对综合评价的影响(权重)越大。熵本源于热力学,后由申农(C. E. Shannon)引入信息论,根据熵的定义与原理,当系统可能处于几种不同状态,每种状态
转载
2023-09-25 14:03:30
478阅读
补一下上次文章的坑,有关标准化和归一化的问题.标准化:(X-E(x))/D(x) 归一化: (X-min)/(max-min)两个的具体差别我的感受不是特别深刻,用的比较多的是归一化.from sklearn.preprocessing import MinMaxScaler
mm = MinMaxScaler()
mm_data = mm.fit_transform(X)
origin_data
转载
2023-09-05 08:09:37
73阅读
面板数据熵值法 本文主要是讲解熵值法的处理过程和代码实现。 建立指标体系和指标评价时有可能用到熵值法(熵权法),但以往的经验来看,熵值法常用于时序数据或者是截面数据。实际上,熵值法在面板数据的应用也是十分常见,但很多时候在数据的处理上各种论文的做法有所不同。本文提供一种常用的面板数据熵值法,给大家提供参考。一、原始数据设定假设数据为d个年度(year)m个省份(prov)的n个指标。显然数据
转载
2023-10-12 09:54:09
164阅读
文章目录一、基本原理二、计算过程三、实例 一、基本原理 熵值法是一种客观赋权法,是根据各项指标观测值所提供的信息的大小来确定指标权重。 在信息论中,熵是对不确定性信息的一种度量。信息量月越大,不确定性就越小,熵也就越小;信息量越小,不确定性就越大,熵也越大。 对于某项指标,可以用熵值来判断某个指标的离散程度,其信息熵值越小,指标值的离散程度越大,提供的信息信息量越多,该指标对综合评价的影响(即权
转载
2023-10-20 11:32:22
145阅读
什么是熵权法熵权法是一种客观赋值方法。在具体使用的过程中,熵权法根据各指标的变异程度,利用信息熵计算出各指标的熵权,再通过熵权对各指标的权重进行修正,从而得到较为客观的指标权重。一般来说,若某个指标的信息熵指标权重确定方法之熵权法越小,表明指标值得变异程度越大,提供的信息量越多,在综合评价中所能起到的作用也越大,其权重也就越大。相反,若某个指标的信息熵指标权重确定方法之熵权法越大,表明指标值得变异
转载
2024-01-12 09:16:16
181阅读
目录一、熵二、熵的计算三、熵权法 一、熵1、定义 在信息论中,熵的公式为 其中p为每一种可能的情况发生的概率,对数的底数决定了信息上的单位。不同的底对应不同的单位。在信息论里通常以2为底,单位为bit;在热力学中以10为底,单位为Hartley;理论推导过程中通常以e为底,单位为nat。2、含义 在信息论里,熵并不直接表示信息的多少,而是表示不确定性的大小。如果要消除这种不确定性,熵越大需要输入
转载
2023-09-30 22:47:45
731阅读
一、基本原理在信息论中,熵是对不确定性的一种度量。信息量越大,不确定性就越小,熵也就越小;信息量越小,不确定性越大,熵也越大。根据熵的特性,可以通过计算熵值来判断一个事件的随机性及无序程度,也可以用熵值来判断某个指标的离散程度,指标的离散程度越大,该指标对综合评价的影响(权重)越大,其熵值越小。二、熵值法步骤选取n个国家,m个指标,则 为第i个国家的第j个指标的数值(i=1, 2…, n; j=1
转载
2024-01-05 22:05:09
149阅读
文章目录一、熵值法原理分析(一)选取数据(二)数据标准化处理1、正负相关性处理(1)正相关指标(2)对于负向指标(越小越好的指标)3、计算第
j
转载
2023-09-17 00:41:29
148阅读
1.熵权法确定客观权重熵学理论最早产生于物理学家对热力学的研究,熵的概念最初描述的是一种单项流动、不可逆转的能量传递过程,随着思想和理论的不断深化和发展,后来逐步形成了热力学熵、统计熵、信息熵三种思路。信息熵方法用来确定权重己经非常广泛地应用于工程技术、社会经济等各领域。由信息熵的基本原理可知,对于一个系统来说,信息和熵分别是其有序程度和无序程度的度量,二者的符号相反、绝对值相等。假设一个系统可能
转载
2024-01-11 08:31:38
41阅读
熵权法求权重创作背景知识补充熵熵权法求权重过程一、特征缩放归一化标准化注二、求熵三、求权重实战一、特征缩放二、求各特征的熵三、求个特征权重结尾 创作背景最近本菜鸡在帮别人搞个 熵权法求权重 ,给的数据是差不多 5 份打分表,有字段和对应的打分,要我求一下 每个字段对应的权重 ,对于这点小忙我还是很乐意帮的,本片博客就用来记录一下过程。 如果觉得我这篇文章写的好的话,能不能给我 点个赞 ,评论 一
转载
2023-10-04 14:07:23
0阅读
熵权法有啥用?可利用信息熵这个工具,计算出各个指标的权重,为多指标综合评价提供依据。 下面的实战中,最终计算的熵权结果为,C语言课程成绩权重占0.99,剩下的两门课成绩权重几乎为0,很好理解,因为体育和数据库大家的分都普遍偏高,体现不出来设么东西。什么是熵熵权如何计算实战示例一、计算每一列的总和二、每一个数据更新为除以总和后的值,即Pij三、计算ln(Pij)四、得到熵值Hi如果存在0的话,可以通
转载
2024-02-03 10:44:34
62阅读
# 熵值法及其Python实现
熵值法(Entropy Method)是一种用于多指标综合评价的数学工具,其主要目的是通过计算不同指标的信息熵,来客观反映各个指标在综合评价中的权重。熵值法在环境评价、决策分析、金融风险评估等众多领域有着广泛应用。本文将通过Python实现熵值法,详细介绍其基本原理及应用步骤。
## 熵值法的基本原理
熵是信息论中的一个核心概念,用于量化不确定性。在评价指标上
决策树是一个简单易用的机器学习算法,具有很好的实用性。在风险评估、数据分类、专家系统中都能见到决策树的身影。决策树其实是一系列的if-then规则的集合,它有可读性良好,分类速度快等优点。下面是用C4.5算法生成的决策树(未进行剪枝),训练数据集:irisTrain.txt ,测试数据集:irisTest.txt 。全部数据集和代码下载地址:Codes & datasets 。#-*- c
转载
2024-04-30 02:32:26
61阅读
文章目录1. 多属性决策问题2. 熵(entropy)3. 信息熵4. 熵权法5. 熵权法的实现 基于信息论的熵值法是根据各指标所含信息有序程度的差异性来确定指标权重的客观赋权方法,仅依赖于数据本身的离散程度。 熵用于度量不确定性,指标的离散程度越大(不确定性越大)则熵值越大,表明指标值提供的信息量越多,则该指标的权重也应越大。1. 多属性决策问题熵权法多用于多属性决策问题中求解各个属性的权值。
转载
2023-09-15 15:47:24
745阅读
## 熵权法求权重 - 一个简单的 Python 实现指南
熵权法是一种用于确定变量权重的有效方法,广泛用于多指标决策分析中。在本文中,我们将讨论如何使用 Python 实现熵权法求权重。以下是整个流程的概述:
### 流程概述
| 步骤 | 描述 |
|------|------|
| 1 | 数据标准化 |
| 2 | 计算各指标的熵值 |
| 3 | 计算各指标的冗余
多目标决策 之 熵权法(综合评价)<font color=blue size=4 face="楷体">1 简介<font color=blue size=4 face="楷体">1 计算步骤1.1 将各指标数据进行
min-max
最近在学习数学建模,在B站发现一个特别不错的课程,讲的很全面,常考的算法都有涉及到:清风数学建模本文将结合熵权法介绍TOPSIS法,并将淡化原理的推导,更侧重于具体应用。TOPSIS法概述TOPSIS法(优劣解距离法)是一种常用的综合评价方法,能充分利用原始数据的信息,其结果能精确地反映各评价方案之间的差距。同时TOPSIS法也可以结合熵权法使用确定各指标所占的权重。基本过程一、统一指标类型常见的
转载
2024-01-31 11:43:39
390阅读